Skip to main content
Log in

Several secondary methods for constructing bent–negabent functions

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper, we present three secondary methods for constructing bent–negabent functions under the frameworks of the indirect sum construction (proposed by Carlet in 2004), the modified indirect sum construction (proposed by Hod\(\check{\text {z}}\)i\(\acute{\text {c}}\) et al in Des Codes Cryptogr 88(10):2007–2035, 2020) and Rothaus’ construction. We first give a construction of bent–negabent functions by using the indirect sum construction, and specify some sufficient conditions on initial functions so that these constructed functions are provably outside the completed Maiorana–McFarland class. Here, we correct some results on the construction of bent–negabent functions proposed by Zhang et al. (IEEE Trans Inf Theory 61(3):1496–1506, 2015). Then, we investigate the nega–Hadamard transform of the composition of a multi-output function and a Boolean function. Using this tool, with initial primary bent–negabent functions, we analyze and find out the necessary and sufficient conditions for the modified indirect sum construction and Rothaus’ construction to generate bent–negabent functions. Furthermore, by developing methods to obtain initial functions satisfying the required necessary and sufficient conditions, we propose several constructions of bent–negabent functions under these two frameworks of the secondary constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carlet C.: Two new classes of bent functions. In: Advances in Cryptology - EUROCRYPT’ 93, LNCS, vol. 765, pp. 77–101. Springer, Berlin (1994)

  2. Carlet C.: On the secondary constructions of resilient and bent functions. In: Coding, Cryptography and Combinatorics 2003, vol. 23, pp. 3–28. Birkhäuser Verlag, PSC (2004)

  3. Carlet C.: On bent and highly nonlinear balanced/resilient functions and their algebraic immunities. In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC) 2006, LNCS, vol. 3857, pp. 1–28 (2006)

  4. Carlet C.: Boolean Functions for Cryptography and Coding Theory. Cambridge University Press, Cambridge (2021).

    MATH  Google Scholar 

  5. Carlet C., Mesnager S.: Four decades of research on bent functions. Des. Codes Cryptogr. 78(1), 5–50 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  6. Carlet C., Zhang F., Hu Y.: Secondary constructions of bent functions and their enforcement. Adv. Math. Commun. 6(3), 305–314 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  7. Dillon J.: Elementary Hadamard difference sets. Ph.D. dissertation, Univ. Maryland, College Park (1974)

  8. Gao G., Lin D., Liu W., Wang Y.: Composition of Boolean functions: an application to the secondary constructions of bent functions. Discret. Math. 343(3), 1–10 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  9. Gupta K., Sarkar P.: Toward a general correlation theorem. IEEE Trans. Inf. Theory 51(9), 3297–3302 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  10. Hodžić S., Pasalic E., Wei Y.: A general framework for secondary constructions of bent and plateaued functions. Des. Codes Cryptogr. 88(10), 2007–2035 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu S., Zhang F., Pasalic E., Xia S., Zhuo Z.: Further study on constructing bent functions outside the completed Maiorana–McFarland class. IET Inf. Secur. 14(6), 654–660 (2020).

    Article  Google Scholar 

  12. Mandal B., Singh B., Gangopadhyay S., Maitra S., Vetrivel V.: On non-existence of bent–negabent rotation symmetric Boolean functions. Discret. Appl. Math. 236, 1–6 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  13. Mandal B., Maitra S., Stǎnicǎ P.: On the existence and non-existence of some classes of bent–negabent functions. Appl. Algebra Eng. Commun. Comput. 33, 237–260 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  14. McFarland R.L.: A family of difference sets in non-cyclic groups. J. Combin. Theory Ser. A 15(1), 1–10 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  15. Mesnager S.: Several new infinite families of bent functions and their duals. IEEE Trans. Inf. Theory 60(7), 4397–4407 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  16. Mesnager S.: Bent Functions: Fundamentals and Results, pp. 1–544. Springer, New York (2016).

    Book  MATH  Google Scholar 

  17. Mesnager S., Zhang F.: On constructions of bent, semi-bent and five valued spectrum functions from old bent functions. Adv. Math. Commun. 11(2), 339–345 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  18. Mesnager S., ben Moussat B., Zhuo Z.: Further results on bent–negabent Boolean functions. In: Security and Privacy: Select Proceedings of ICSP 2020. Lecture Notes in Electrical Engineering, vol. 744. Springer, Singapore (2021)

  19. Parker M.G.: Constabent properties of Golay–Davis–Jedwab sequences. In: Proc. IEEE Int. Symp. Inform. Theory, Sorrento, Italy (2000)

  20. Parker M.G., Pott A.: On Boolean functions which are bent and negabent. In: Sequences, Subsequences, and Consequences, LNCS, vol. 4893, pp. 9–23. Springer, Berlin (2007)

  21. Riera C., Parker M.G.: Generalized bent criteria for Boolean functions (I). IEEE Trans. Inf. Theory 52(9), 4142–4159 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  22. Rothaus O.S.: On “bent’’ functions. J. Comb. Theory Ser. A 20(3), 300–305 (1976).

    Article  MATH  Google Scholar 

  23. Sarkar S.: Characterizing negabent Boolean functions over finite fields. In: Proc. Sequ. Appl., LNCS, vol. 7280, pp. 77–88. Springer, Berlin (2012)

  24. Savicky P.: On the bent Boolean functions that are symmetric. Eur. J. Comb. 15(4), 407–410 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  25. Schmidt K.-U., Parker M.G., Pott A.: Negabent functions in the Maiorana–McFarland class. In: Proc. Sequ. Appl., LNCS, vol. 5203, pp. 390–402. Springer, Berlin (2008)

  26. Stǎnicǎ P., Gangopadhyay S., Chaturvedi A., Gangopadhyay A.K., Maitra S.: Nega–Hadamard transform, bent and negabent functions. In: Proc. Sequ. Appl., LNCS, vol. 6338, pp. 359–372. Springer, Berlin (2010)

  27. Stǎnicǎ P., Gangopadhyay S., Chaturvedi A., Gangopadhyay A.K., Maitra S.: Investigations on bent and negabent functions via the nega–Hadamard transform. IEEE Trans. Inf. Theory 58(6), 4064–4072 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  28. Su W., Pott A., Tang X.: Characterization of negabent functions and construction of bent–negabent functions with maximum algebraic degree. IEEE Trans. Inf. Theory 59(6), 3387–3395 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  29. Wu G., Li N., Zhang Y., Liu X.: Several classes of negabent functions over finite fields. Sci. China Inf. Sci. 61(3), 1–3 (2018).

    Article  Google Scholar 

  30. Zhang F., Wei Y., Pasalic E.: Constructions of bent–negabent functions and their relation to the completed Maiorana–McFarland class. IEEE Trans. Inf. Theory 61(3), 1496–1506 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang F., Carlet C., Hu Y., Zhang W.: New secondary constructions of bent functions. Appl. Algebra Eng. Commun. Comput. 27(5), 413–434 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang F., Pasalic E., Wei Y., Cepak N.: Constructing bent functions outside the Maiorana–McFarland class using a general form of Rothaus. IEEE Trans. Inf. Theory 63(8), 5336–5349 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhou Y., Qu L.: Constructions of negabent functions over finite fields. Cryptogr. Commun. 9(2), 165–180 (2017).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewers for their constructive suggestions that improved the presentation and quality of this paper. Fei Guo would like to thank Dr. Fengrong Zhang for his valuable discussions. This research was supported by National Natural Science Foundation of China (No. 62172319, U19B2021), Natural Science Basic Research Program of Shaanxi (No. 2021JQ-192) and the Fundamental Research Funds for the Central Universities (No. JB211508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zilong Wang.

Additional information

Communicated by C. Carlet.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Fei Guo is currently with the Department of Electrical and Computer Engineering, University of Waterloo, as an exchange Ph.D student.

Appendices

Appendix A: Proof of Theorem 8

To prove Theorem 8, we need the following two lemmas.

Lemma 7

Let \(M_1, M_2, M_3, M_4 \in \{\pm 1, \pm \imath \}\). The following four equations have the same solutions of \((M_1, M_2, M_3, M_4)\):

$$\begin{aligned} |\imath \cdot M_1 + M_2 + M_3 + \imath \cdot M_4|= 2;&\ |M_1 + \imath \cdot M_2 -\imath \cdot M_3 - M_4|= 2; \\ |M_1 -\imath \cdot M_2 + \imath \cdot M_3 - M_4|= 2;&\ |-\imath \cdot M_1 + M_2 + M_3 - \imath \cdot M_4|= 2. \end{aligned}$$

Proof

The proof can be completed easily by exhaustive search and we omit it. \(\square \)

Lemma 8

Let n be a positive even integer, and \(a, b \in \mathcal {B}_n\) be negabent functions. Then, \({{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}) = \pm \imath \cdot {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}})\) if and only if \(\widetilde{a_\sigma }(\varvec{\textrm{u}}) \oplus \widetilde{a_\sigma }(\bar{\varvec{\textrm{u}}}) \oplus \widetilde{b_\sigma }(\varvec{\textrm{u}}) \oplus \widetilde{b_\sigma }(\bar{\varvec{\textrm{u}}}) = 1\) for \(\varvec{\textrm{u}} \in \mathbb {F}_2^n\).

Proof

Since a and b are negabent functions, then \(a_\sigma \) and \(b_\sigma \) are bent functions by Lemma 3. By Lemma 4, we have

$$\begin{aligned} \left\{ \begin{aligned}&\imath \cdot {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}) = \frac{\imath }{2} \left[ {{\,\textrm{W}\,}}_{a_\sigma }(\varvec{\textrm{u}}) + {{\,\textrm{W}\,}}_{a_\sigma }(\bar{\varvec{\textrm{u}}})\right] - \frac{1}{2} \left[ {{\,\textrm{W}\,}}_{a_\sigma }(\varvec{\textrm{u}}) - {{\,\textrm{W}\,}}_{a_\sigma }(\bar{\varvec{\textrm{u}}})\right] , \\&{{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}) = \frac{1}{2} \left[ {{\,\textrm{W}\,}}_{b_\sigma }(\varvec{\textrm{u}}) + {{\,\textrm{W}\,}}_{b_\sigma }(\bar{\varvec{\textrm{u}}})\right] + \frac{\imath }{2} \left[ {{\,\textrm{W}\,}}_{b_\sigma }(\varvec{\textrm{u}}) - {{\,\textrm{W}\,}}_{b_\sigma }(\bar{\varvec{\textrm{u}}})\right] . \end{aligned} \right. \end{aligned}$$

The condition \({{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}) = \imath \cdot {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}) \Leftrightarrow \)

$$\begin{aligned} \left\{ \begin{aligned}&{{\,\textrm{W}\,}}_{a_\sigma }(\varvec{\textrm{u}}) + {{\,\textrm{W}\,}}_{a_\sigma }(\bar{\varvec{\textrm{u}}}) = {{\,\textrm{W}\,}}_{b_\sigma }(\varvec{\textrm{u}}) - {{\,\textrm{W}\,}}_{b_\sigma }(\bar{\varvec{\textrm{u}}}), \\&-{{\,\textrm{W}\,}}_{a_\sigma }(\varvec{\textrm{u}}) + {{\,\textrm{W}\,}}_{a_\sigma }(\bar{\varvec{\textrm{u}}}) = {{\,\textrm{W}\,}}_{b_\sigma }(\varvec{\textrm{u}}) + {{\,\textrm{W}\,}}_{b_\sigma }(\bar{\varvec{\textrm{u}}}), \end{aligned} \right. \end{aligned}$$

\(\Leftrightarrow \) \({{\,\textrm{W}\,}}_{a_\sigma }(\varvec{\textrm{u}}) = -{{\,\textrm{W}\,}}_{b_\sigma }(\bar{\varvec{\textrm{u}}})\) and \({{\,\textrm{W}\,}}_{a_\sigma }(\bar{\varvec{\textrm{u}}}) = {{\,\textrm{W}\,}}_{b_\sigma }(\varvec{\textrm{u}})\), which are further equivalent to \((-1)^{\widetilde{a_\sigma }(\varvec{\textrm{u}})} = -(-1)^{\widetilde{b_\sigma }(\bar{\varvec{\textrm{u}}})}\) and \((-1)^{\widetilde{a_\sigma }(\bar{\varvec{\textrm{u}}})} = (-1)^{\widetilde{b_\sigma }(\varvec{\textrm{u}})}\), \(\Leftrightarrow \) \(\widetilde{a_\sigma }(\varvec{\textrm{u}}) = \widetilde{b_\sigma }(\bar{\varvec{\textrm{u}}}) \oplus 1\) and \(\widetilde{a_\sigma }(\bar{\varvec{\textrm{u}}}) = \widetilde{b_\sigma }(\varvec{\textrm{u}})\).

Similarly, the condition \({{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}) = -\imath \cdot {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}})\) \(\Leftrightarrow \) \(\widetilde{a_\sigma }(\varvec{\textrm{u}}) = \widetilde{b_\sigma }(\bar{\varvec{\textrm{u}}})\) and \(\widetilde{a_\sigma }(\bar{\varvec{\textrm{u}}}) = \widetilde{b_\sigma }(\varvec{\textrm{u}}) \oplus 1\).

Together with the above two conditions, the result follows immediately. \(\square \)

Proof of Theorem 8

Rewrite f as \(f(\varvec{\textrm{x}}, \varvec{\textrm{y}}, z_1, z_2) = h (a(\varvec{\textrm{x}}), b(\varvec{\textrm{x}}), c(\varvec{\textrm{y}}), d(\varvec{\textrm{y}}), z_1, z_2)\), where h is a 6-variable Boolean function with the ANF

$$\begin{aligned} h(x_1, \cdots , x_6) = x_2\oplus x_4\oplus (x_1\oplus x_2\oplus x_5)(x_3\oplus x_4\oplus x_6). \end{aligned}$$

By a direct calculation, we have

$$\begin{aligned}&{{\,\textrm{W}\,}}_h(0,1,0,1,0,0)=2^2,\ {{\,\textrm{W}\,}}_h(0,1,1,0,0,1)=2^2,\\&{{\,\textrm{W}\,}}_h(1,0,0,1,1,0)=2^2,\ {{\,\textrm{W}\,}}_h(1,0,1,0,1,1)=-2^2, \end{aligned}$$

and the Walsh–Hadamard transform of h vanishes at other positions. By Theorem 7, the nega–Hadamard transform of f at \((\varvec{\textrm{u}}, \varvec{\textrm{v}}, w_1, w_2)\in \mathbb {F}_2^n \times \mathbb {F}_2^m \times \mathbb {F}_2 \times \mathbb {F}_2\) is given by

$$\begin{aligned}&{{\,\textrm{N}\,}}_f(\varvec{\textrm{u}}, \varvec{\textrm{v}}, w_1, w_2) = 2^{-3} \sum _{\varvec{{\omega }} \in {\mathbb {F}_2^{6}}}{{\,\textrm{W}\,}}_h(\varvec{{\omega }}) {{\,\textrm{N}\,}}_{\varvec{{\omega }}\cdot (a(\varvec{\textrm{x}}), b(\varvec{\textrm{x}}), c(\varvec{\textrm{y}}), d(\varvec{\textrm{y}}), z_1, z_2)}(\varvec{\textrm{u}}, \varvec{\textrm{v}}, w_1, w_2) \\&= 2^{-1} \left[ {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_d(\varvec{\textrm{v}}){{\,\textrm{N}\,}}_0(w_1, w_2) + {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_c(\varvec{\textrm{v}}){{\,\textrm{N}\,}}_{z_2}(w_1, w_2) \right. \\&\quad \left. + {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_d(\varvec{\textrm{v}}){{\,\textrm{N}\,}}_{z_1}(w_1, w_2) - {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_c(\varvec{\textrm{v}}){{\,\textrm{N}\,}}_{z_1\oplus z_2}(w_1, w_2)\right] \\&= {\left\{ \begin{array}{ll} 2^{-1} \left[ \imath \cdot {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_d(\varvec{\textrm{v}}) + {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_c(\varvec{\textrm{v}}) + {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_d(\varvec{\textrm{v}}) +\imath \cdot {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_c(\varvec{\textrm{v}}) \right] ,\\ (w_1, w_2) = (0, 0); \\ 2^{-1} \left[ {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_d(\varvec{\textrm{v}}) + \imath \cdot {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_c(\varvec{\textrm{v}}) - \imath \cdot {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_d(\varvec{\textrm{v}}) - {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_c(\varvec{\textrm{v}}) \right] , \\ (w_1, w_2) = (0, 1); \\ 2^{-1} \left[ {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_d(\varvec{\textrm{v}}) - \imath \cdot {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_c(\varvec{\textrm{v}}) + \imath \cdot {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_d(\varvec{\textrm{v}}) - {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_c(\varvec{\textrm{v}}) \right] , \\ (w_1, w_2) = (1, 0); \\ 2^{-1} \left[ -\imath \cdot {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_d(\varvec{\textrm{v}}) + {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_c(\varvec{\textrm{v}}) + {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_d(\varvec{\textrm{v}}) -\imath \cdot {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_c(\varvec{\textrm{v}}) \right] , \\ (w_1, w_2) = (1, 1). \end{array}\right. } \end{aligned}$$

Since abcd are all negabent functions, then all the values \({{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}), {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}), {{\,\textrm{N}\,}}_c(\varvec{\textrm{v}}), {{\,\textrm{N}\,}}_d(\varvec{\textrm{v}})\) lie in \(\{\pm 1, \pm \imath \}\). Furthermore, the values \({{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_d(\varvec{\textrm{v}}), {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_c(\varvec{\textrm{v}}), {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_d(\varvec{\textrm{v}}), {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_c(\varvec{\textrm{v}})\) still lie in \(\{\pm 1, \pm \imath \}\). f is negabent if and only if \(|{{\,\textrm{N}\,}}_f(\varvec{\textrm{u}}, \varvec{\textrm{v}}, w_1, w_2)|= 1\) for all \((\varvec{\textrm{u}}, \varvec{\textrm{v}}, w_1, w_2)\in \mathbb {F}_2^n \times \mathbb {F}_2^m \times \mathbb {F}_2 \times \mathbb {F}_2\). By Lemma 7, we know that the four equations \(|{{\,\textrm{N}\,}}_f(\varvec{\textrm{u}}, \varvec{\textrm{v}}, w_1, w_2)|= 1\) have the same solutions of \(({{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}), {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}), {{\,\textrm{N}\,}}_c(\varvec{\textrm{v}}), {{\,\textrm{N}\,}}_d(\varvec{\textrm{v}}))\) for the four cases of \((w_1, w_2) \in \mathbb {F}_2^2\). Hence, we only study the first equation:

$$\begin{aligned} |\imath \cdot {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_d(\varvec{\textrm{v}}) + {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_c(\varvec{\textrm{v}}) + {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_d(\varvec{\textrm{v}}) +\imath \cdot {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_c(\varvec{\textrm{v}})|= 2, \end{aligned}$$

which is equivalent to

$$\begin{aligned} |{{\,\textrm{N}\,}}_c(\varvec{\textrm{v}})\left( \imath \cdot {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}) + {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}) \right) + {{\,\textrm{N}\,}}_d(\varvec{\textrm{v}})\left( {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}) + \imath \cdot {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}) \right) |= 2. \end{aligned}$$

Then we have the following discussions.

  1. (1)

    If \(|\imath \cdot {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}) + {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}})|= 0\) or 2 for all \(\varvec{\textrm{u}}\in \mathbb {F}_2^n\), we obtain \(|{{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}) + \imath \cdot {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}})|= 2\) or 0. Then we have \({{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}) = \pm \imath \cdot {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}})\) for all \(\varvec{\textrm{u}}\in \mathbb {F}_2^n\).

  2. (2)

    If \(|\imath \cdot {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}) + {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}})|=\sqrt{2}\) for some \(\varvec{\textrm{u}}\in \mathbb {F}_2^n\), we obtain \({{\,\textrm{N}\,}}_d(\varvec{\textrm{v}}) = \pm \imath \cdot {{\,\textrm{N}\,}}_c(\varvec{\textrm{v}})\) for all \(\varvec{\textrm{v}}\in \mathbb {F}_2^n\).

According to Lemma 8, f is negabent if and only if \(\widetilde{a_\sigma }(\varvec{\textrm{x}}) \oplus \widetilde{a_\sigma }(\bar{\varvec{\textrm{x}}}) \oplus \widetilde{b_\sigma }(\varvec{\textrm{x}}) \oplus \widetilde{b_\sigma }(\bar{\varvec{\textrm{x}}}) = 1\) or \(\widetilde{c_\sigma }(\varvec{\textrm{y}}) \oplus \widetilde{c_\sigma }(\bar{\varvec{\textrm{y}}}) \oplus \widetilde{d_\sigma }(\varvec{\textrm{y}}) \oplus \widetilde{d_\sigma }(\bar{\varvec{\textrm{y}}}) = 1\). \(\square \)

Appendix B: Proof of Theorem 10

To prove Theorem 10, we need the following two lemmas.

Lemma 9

Let n be a positive even integer, and \(a, d \in \mathcal {B}_n\) be arbitrary negabent functions. Then, for \(\varvec{\textrm{u}} \in \mathbb {F}_2^n\), we have

  1. (i)

    \({{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}) = {{\,\textrm{N}\,}}_d(\varvec{\textrm{u}})\) if and only if \((\widetilde{a_\sigma }(\varvec{\textrm{u}}), \widetilde{a_\sigma }(\bar{\varvec{\textrm{u}}})) \oplus (\widetilde{d_\sigma }(\varvec{\textrm{u}}), \widetilde{d_\sigma }(\bar{\varvec{\textrm{u}}})) = (0, 0)\);

  2. (ii)

    \({{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}) = -{{\,\textrm{N}\,}}_d(\varvec{\textrm{u}})\) if and only if \((\widetilde{a_\sigma }(\varvec{\textrm{u}}), \widetilde{a_\sigma }(\bar{\varvec{\textrm{u}}})) \oplus (\widetilde{d_\sigma }(\varvec{\textrm{u}}), \widetilde{d_\sigma }(\bar{\varvec{\textrm{u}}})) = (1, 1)\).

Proof

  1. (i)

    From Lemma 3, we know that \(a_\sigma , d_\sigma \) are bent functions since ad are negabent functions. By Lemma 4 we know \({{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}) = {{\,\textrm{N}\,}}_d(\varvec{\textrm{u}})\) if and only if \( {\left\{ \begin{array}{ll} {{\,\textrm{W}\,}}_{a_\sigma }(\varvec{\textrm{u}}) + {{\,\textrm{W}\,}}_{a_\sigma }(\bar{\varvec{\textrm{u}}}) = {{\,\textrm{W}\,}}_{d_\sigma }(\varvec{\textrm{u}}) + {{\,\textrm{W}\,}}_{d_\sigma }(\bar{\varvec{\textrm{u}}}), \\ {{\,\textrm{W}\,}}_{a_\sigma }(\varvec{\textrm{u}}) - {{\,\textrm{W}\,}}_{a_\sigma }(\bar{\varvec{\textrm{u}}}) = {{\,\textrm{W}\,}}_{d_\sigma }(\varvec{\textrm{u}}) - {{\,\textrm{W}\,}}_{d_\sigma }(\bar{\varvec{\textrm{u}}}). \end{array}\right. } \) That is to say, \({{\,\textrm{W}\,}}_{a_\sigma }(\varvec{\textrm{u}}) = {{\,\textrm{W}\,}}_{d_\sigma }(\varvec{\textrm{u}})\) and \({{\,\textrm{W}\,}}_{a_\sigma }(\bar{\varvec{\textrm{u}}}) = {{\,\textrm{W}\,}}_{d_\sigma }(\bar{\varvec{\textrm{u}}})\). Furthermore, it is equivalent to \((-1)^{\widetilde{a_\sigma }(\varvec{\textrm{u}})} = (-1)^{\widetilde{d_\sigma }(\varvec{\textrm{u}})}\) and \((-1)^{\widetilde{a_\sigma }(\bar{\varvec{\textrm{u}}})} = (-1)^{\widetilde{d_\sigma }(\bar{\varvec{\textrm{u}}})}\), i.e., \((\widetilde{a_\sigma }(\varvec{\textrm{u}}), \widetilde{a_\sigma }(\bar{\varvec{\textrm{u}}})) \oplus (\widetilde{d_\sigma }(\varvec{\textrm{u}}), \widetilde{d_\sigma }(\bar{\varvec{\textrm{u}}})) = (0, 0)\).

  2. (ii)

    Item (ii) can be proved similarly to item (i) and we omit it.

\(\square \)

Lemma 10

Let n be a positive even integer, and \(a, b, c, d \in \mathcal {B}_n\) be negabent functions. Then, \({{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}) + {{\,\textrm{N}\,}}_c(\varvec{\textrm{u}})=\pm ({{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}) + {{\,\textrm{N}\,}}_d(\varvec{\textrm{u}}))\) if and only if \( (\widetilde{b_\sigma }(\varvec{\textrm{u}}), \widetilde{b_\sigma }(\bar{\varvec{\textrm{u}}})) \oplus (\widetilde{c_\sigma }(\varvec{\textrm{u}}), \widetilde{c_\sigma }(\bar{\varvec{\textrm{u}}})) = (\widetilde{a_\sigma }(\varvec{\textrm{u}}), \widetilde{a_\sigma }(\bar{\varvec{\textrm{u}}})) \oplus (\widetilde{d_\sigma }(\varvec{\textrm{u}}), \widetilde{d_\sigma }(\bar{\varvec{\textrm{u}}})) \) for \(\varvec{\textrm{u}} \in \mathbb {F}_2^n\).

Proof

Since abcd are negabent functions, then \(a_\sigma , b_\sigma , c_\sigma , d_\sigma \) are bent functions by Lemma 3.

For the case \({{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}) + {{\,\textrm{N}\,}}_c(\varvec{\textrm{u}}) = {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}) + {{\,\textrm{N}\,}}_d(\varvec{\textrm{u}})\), by Lemma 4 we have

$$\begin{aligned} {\left\{ \begin{array}{ll} &{}\left( {{\,\textrm{W}\,}}_{b_\sigma }(\varvec{\textrm{u}}) + {{\,\textrm{W}\,}}_{c_\sigma }(\varvec{\textrm{u}}) \right) + \left( {{\,\textrm{W}\,}}_{b_\sigma }(\bar{\varvec{\textrm{u}}}) + {{\,\textrm{W}\,}}_{c_\sigma }(\bar{\varvec{\textrm{u}}})\right) \\ &{}\quad = \left( {{\,\textrm{W}\,}}_{a_\sigma }(\varvec{\textrm{u}}) + {{\,\textrm{W}\,}}_{d_\sigma }(\varvec{\textrm{u}}) \right) + \left( {{\,\textrm{W}\,}}_{a_\sigma }(\bar{\varvec{\textrm{u}}}) + {{\,\textrm{W}\,}}_{d_\sigma }(\bar{\varvec{\textrm{u}}})\right) , \\ &{}\left( {{\,\textrm{W}\,}}_{b_\sigma }(\varvec{\textrm{u}}) + {{\,\textrm{W}\,}}_{c_\sigma }(\varvec{\textrm{u}}) \right) - \left( {{\,\textrm{W}\,}}_{b_\sigma }(\bar{\varvec{\textrm{u}}}) + {{\,\textrm{W}\,}}_{c_\sigma }(\bar{\varvec{\textrm{u}}})\right) \\ &{}\quad = \left( {{\,\textrm{W}\,}}_{a_\sigma }(\varvec{\textrm{u}}) + {{\,\textrm{W}\,}}_{d_\sigma }(\varvec{\textrm{u}}) \right) - \left( {{\,\textrm{W}\,}}_{a_\sigma }(\bar{\varvec{\textrm{u}}}) + {{\,\textrm{W}\,}}_{d_\sigma }(\bar{\varvec{\textrm{u}}})\right) , \end{array}\right. } \end{aligned}$$

\(\Leftrightarrow \)

$$\begin{aligned} {\left\{ \begin{array}{ll} {{\,\textrm{W}\,}}_{b_\sigma }(\varvec{\textrm{u}}) + {{\,\textrm{W}\,}}_{c_\sigma }(\varvec{\textrm{u}}) = {{\,\textrm{W}\,}}_{a_\sigma }(\varvec{\textrm{u}}) + {{\,\textrm{W}\,}}_{d_\sigma }(\varvec{\textrm{u}}), \\ {{\,\textrm{W}\,}}_{b_\sigma }(\bar{\varvec{\textrm{u}}}) + {{\,\textrm{W}\,}}_{c_\sigma }(\bar{\varvec{\textrm{u}}}) = {{\,\textrm{W}\,}}_{a_\sigma }(\bar{\varvec{\textrm{u}}}) + {{\,\textrm{W}\,}}_{d_\sigma }(\bar{\varvec{\textrm{u}}}), \end{array}\right. } \end{aligned}$$

\(\Leftrightarrow \)

$$\begin{aligned} {\left\{ \begin{array}{ll} (-1)^{\widetilde{b_\sigma }(\varvec{\textrm{u}})} + (-1)^{\widetilde{c_\sigma }(\varvec{\textrm{u}})} = (-1)^{\widetilde{a_\sigma }(\varvec{\textrm{u}})} + (-1)^{\widetilde{d_\sigma }(\varvec{\textrm{u}})}, \\ (-1)^{\widetilde{b_\sigma }(\bar{\varvec{\textrm{u}}})} +(-1)^{\widetilde{c_\sigma }(\bar{\varvec{\textrm{u}}})} = (-1)^{\widetilde{a_\sigma }(\bar{\varvec{\textrm{u}}})} +(-1)^{\widetilde{d_\sigma }(\bar{\varvec{\textrm{u}}})}. \end{array}\right. } \end{aligned}$$
(B1)

Similarly, the case \({{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}) + {{\,\textrm{N}\,}}_c(\varvec{\textrm{u}}) = -({{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}) + {{\,\textrm{N}\,}}_d(\varvec{\textrm{u}}))\) \(\Leftrightarrow \)

$$\begin{aligned} {\left\{ \begin{array}{ll} (-1)^{\widetilde{b_\sigma }(\varvec{\textrm{u}})} + (-1)^{\widetilde{c_\sigma }(\varvec{\textrm{u}})} = (-1)^{\widetilde{a_\sigma }(\varvec{\textrm{u}})\oplus 1} + (-1)^{\widetilde{d_\sigma }(\varvec{\textrm{u}})\oplus 1}, \\ (-1)^{\widetilde{b_\sigma }(\bar{\varvec{\textrm{u}}})} +(-1)^{\widetilde{c_\sigma }(\bar{\varvec{\textrm{u}}})} = (-1)^{\widetilde{a_\sigma }(\bar{\varvec{\textrm{u}}})\oplus 1} +(-1)^{\widetilde{d_\sigma }(\bar{\varvec{\textrm{u}}})\oplus 1}. \end{array}\right. } \end{aligned}$$
(B2)

Finally, the condition (B1) or (B2) is equivalent to \((\widetilde{b_\sigma }(\varvec{\textrm{u}}), \widetilde{b_\sigma }(\bar{\varvec{\textrm{u}}})) \oplus (\widetilde{c_\sigma }(\varvec{\textrm{u}}), \widetilde{c_\sigma }(\bar{\varvec{\textrm{u}}})) = (\widetilde{a_\sigma }(\varvec{\textrm{u}}), \widetilde{a_\sigma }(\bar{\varvec{\textrm{u}}})) \oplus (\widetilde{d_\sigma }(\varvec{\textrm{u}}), \widetilde{d_\sigma }(\bar{\varvec{\textrm{u}}}))\). \(\square \)

Proof of Theorem 10

Rewrite f as \( f(\varvec{\textrm{x}}, y_1, y_2)=h(a(\varvec{\textrm{x}}), b(\varvec{\textrm{x}}), c(\varvec{\textrm{x}}), y_1, y_2), \) where h is a 5-variable Boolean function with ANF

$$\begin{aligned} h(x_1, \ldots , x_5) = x_1x_2\oplus x_1x_3\oplus x_2x_3\oplus x_4x_5\oplus (x_1\oplus x_2)x_4\oplus (x_1\oplus x_3)x_5. \end{aligned}$$

By a direct calculation, we have

$$\begin{aligned}&{{\,\textrm{W}\,}}_h(1,0,0,0,0)=2^\frac{3}{2},\ {{\,\textrm{W}\,}}_h(0,1,0,0,1)=2^\frac{3}{2},\\&{{\,\textrm{W}\,}}_h(0,0,1,1,0)=2^\frac{3}{2},\ {{\,\textrm{W}\,}}_h(1,1,1,1,1)=-2^\frac{3}{2}, \end{aligned}$$

and the Walsh–Hadamard transform of h vanishes at other positions. By Theorem 7, the nega–Hadamard transform of f at \((\varvec{\textrm{u}}, v_1, v_2) \in \mathbb {F}_2^n \times \mathbb {F}_2 \times \mathbb {F}_2\) is given by

$$\begin{aligned} {{\,\textrm{N}\,}}_f(\varvec{\textrm{u}}, v_1, v_2)&= 2^{-\frac{5}{2}}\sum _{\varvec{{\omega }} \in {\mathbb {F}_2^{5}}}{{\,\textrm{W}\,}}_h(\varvec{{\omega }}) {{\,\textrm{N}\,}}_{\varvec{{\omega }}\cdot (a(\varvec{\textrm{x}}), b(\varvec{\textrm{x}}), c(\varvec{\textrm{x}}), y_1, y_2)}(\varvec{\textrm{u}}, v_1, v_2) \\&= 2^{-1} \left[ {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_0(v_1, v_2) + {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_{y_2}(v_1, v_2) \right. \\&\quad \left. + {{\,\textrm{N}\,}}_c(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_{y_1}(v_1, v_2) - {{\,\textrm{N}\,}}_d(\varvec{\textrm{u}}){{\,\textrm{N}\,}}_{y_1\oplus y_2}(v_1, v_2)\right] \\&= {\left\{ \begin{array}{ll} 2^{-1} \left[ \imath \cdot {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}})+ {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}) + {{\,\textrm{N}\,}}_c(\varvec{\textrm{u}}) +\imath \cdot {{\,\textrm{N}\,}}_d(\varvec{\textrm{u}}) \right] , \quad (v_1, v_2) = (0, 0); \\ 2^{-1} \left[ {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}})+ \imath \cdot {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}) -\imath \cdot {{\,\textrm{N}\,}}_c(\varvec{\textrm{u}}) - {{\,\textrm{N}\,}}_d(\varvec{\textrm{u}}) \right] , \quad (v_1, v_2) = (0, 1); \\ 2^{-1} \left[ {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}})- \imath \cdot {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}) +\imath \cdot {{\,\textrm{N}\,}}_c(\varvec{\textrm{u}}) - {{\,\textrm{N}\,}}_d(\varvec{\textrm{u}}) \right] , \quad (v_1, v_2) = (1, 0); \\ 2^{-1} \left[ -\imath \cdot {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}})+ {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}) + {{\,\textrm{N}\,}}_c(\varvec{\textrm{u}}) -\imath \cdot {{\,\textrm{N}\,}}_d(\varvec{\textrm{u}}) \right] , \ (v_1, v_2) = (1, 1). \end{array}\right. } \end{aligned}$$

Since abcd are all negabent, then all the values of \({{\,\textrm{N}\,}}_a(\varvec{\textrm{u}})\), \({{\,\textrm{N}\,}}_b(\varvec{\textrm{u}})\), \({{\,\textrm{N}\,}}_c(\varvec{\textrm{u}})\), \({{\,\textrm{N}\,}}_d(\varvec{\textrm{u}})\) lie in \(\{\pm 1, \pm \imath \}\).

f is negabent if and only if \(|{{\,\textrm{N}\,}}_f(\varvec{\textrm{u}}, v_1, v_2)|=1\) for all \((\varvec{\textrm{u}}, v_1, v_2)\in \mathbb {F}_2^n \times \mathbb {F}_2 \times \mathbb {F}_2\). From Lemma 7, for the four cases of \((v_1, v_2)\in \mathbb {F}_2^2\), the above four equations \(|{{\,\textrm{N}\,}}_f(\varvec{\textrm{u}}, v_1, v_2)|=1\) have the same solutions of \(({{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}), {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}), {{\,\textrm{N}\,}}_c(\varvec{\textrm{u}}), {{\,\textrm{N}\,}}_d(\varvec{\textrm{u}}))\). Hence, we only study the first equation:

$$\begin{aligned} |\imath \cdot \left[ {{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}) + {{\,\textrm{N}\,}}_d(\varvec{\textrm{u}})\right] + \left[ {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}) + {{\,\textrm{N}\,}}_c(\varvec{\textrm{u}})\right] |= 2. \end{aligned}$$
(B3)

The solutions of (B3) lie in the following three cases:

  1. (1)

    \({{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}) = - {{\,\textrm{N}\,}}_c(\varvec{\textrm{u}})\), \({{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}) = {{\,\textrm{N}\,}}_d(\varvec{\textrm{u}})\);

  2. (2)

    \({{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}) = {{\,\textrm{N}\,}}_c(\varvec{\textrm{u}})\), \({{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}) = - {{\,\textrm{N}\,}}_d(\varvec{\textrm{u}})\);

  3. (3)

    \({{\,\textrm{N}\,}}_c(\varvec{\textrm{u}}) = \pm \imath \cdot {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}})\), \({{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}) + {{\,\textrm{N}\,}}_c(\varvec{\textrm{u}})=\pm ({{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}) + {{\,\textrm{N}\,}}_d(\varvec{\textrm{u}}))\).

From Lemma 9, the cases (1) and (2) are respectively equivalent to

$$\begin{aligned} {\left\{ \begin{array}{ll} (\widetilde{b_\sigma }(\varvec{\textrm{u}}), \widetilde{b_\sigma }(\bar{\varvec{\textrm{u}}})) \oplus (\widetilde{c_\sigma }(\varvec{\textrm{u}}), \widetilde{c_\sigma }(\bar{\varvec{\textrm{u}}})) = (1,1), \\ (\widetilde{a_\sigma }(\varvec{\textrm{u}}), \widetilde{a_\sigma }(\bar{\varvec{\textrm{u}}})) \oplus (\widetilde{d_\sigma }(\varvec{\textrm{u}}), \widetilde{d_\sigma }(\bar{\varvec{\textrm{u}}})) = (0, 0), \end{array}\right. } \end{aligned}$$
(B4)

and

$$\begin{aligned} {\left\{ \begin{array}{ll} (\widetilde{b_\sigma }(\varvec{\textrm{u}}), \widetilde{b_\sigma }(\bar{\varvec{\textrm{u}}})) \oplus (\widetilde{c_\sigma }(\varvec{\textrm{u}}), \widetilde{c_\sigma }(\bar{\varvec{\textrm{u}}})) = (0,0), \\ (\widetilde{a_\sigma }(\varvec{\textrm{u}}), \widetilde{a_\sigma }(\bar{\varvec{\textrm{u}}})) \oplus (\widetilde{d_\sigma }(\varvec{\textrm{u}}), \widetilde{d_\sigma }(\bar{\varvec{\textrm{u}}})) = (1, 1). \end{array}\right. } \end{aligned}$$
(B5)

For the case (3), by Lemma 8, \({{\,\textrm{N}\,}}_c(\varvec{\textrm{u}}) = \pm \imath \cdot {{\,\textrm{N}\,}}_b(\varvec{\textrm{u}})\) is equivalent to \(\widetilde{b_\sigma }(\varvec{\textrm{u}}) \oplus \widetilde{b_\sigma }(\bar{\varvec{\textrm{u}}}) \oplus \widetilde{c_\sigma }(\varvec{\textrm{u}}) \oplus \widetilde{c_\sigma }(\bar{\varvec{\textrm{u}}}) = 1\), i.e., \((\widetilde{b_\sigma }(\varvec{\textrm{u}}), \widetilde{b_\sigma }(\bar{\varvec{\textrm{u}}})) \oplus (\widetilde{c_\sigma }(\varvec{\textrm{u}}), \widetilde{c_\sigma }(\bar{\varvec{\textrm{u}}}))\in \{(0, 1), (1, 0) \}\). Furthermore, by Lemma 10, we know that \({{\,\textrm{N}\,}}_b(\varvec{\textrm{u}}) + {{\,\textrm{N}\,}}_c(\varvec{\textrm{u}})=\pm ({{\,\textrm{N}\,}}_a(\varvec{\textrm{u}}) + {{\,\textrm{N}\,}}_d(\varvec{\textrm{u}}))\) is equivalent to

$$\begin{aligned} (\widetilde{b_\sigma }(\varvec{\textrm{u}}), \widetilde{b_\sigma }(\bar{\varvec{\textrm{u}}})) \oplus (\widetilde{c_\sigma }(\varvec{\textrm{u}}), \widetilde{c_\sigma }(\bar{\varvec{\textrm{u}}}))&= (\widetilde{a_\sigma }(\varvec{\textrm{u}}), \widetilde{a_\sigma }(\bar{\varvec{\textrm{u}}})) \oplus (\widetilde{d_\sigma }(\varvec{\textrm{u}}), \widetilde{d_\sigma }(\bar{\varvec{\textrm{u}}})) \nonumber \\&\quad \in \{(0,1), (1,0) \}. \end{aligned}$$
(B6)

It follows immediately that (B4) together with (B5) are equivalent to the C-1, and (B6) is equivalent to C-2 in Theorem 10. The proof is completed. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, F., Wang, Z. & Gong, G. Several secondary methods for constructing bent–negabent functions. Des. Codes Cryptogr. 91, 971–995 (2023). https://doi.org/10.1007/s10623-022-01133-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01133-0

Keywords

Mathematics Subject Classification

Navigation