Skip to main content
Log in

A design and flexible assignment of orthogonal binary sequence sets for (QS)-CDMA systems

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Boolean functions naturally induce binary sequences of length \(2^m\) and a large number of such orthogonal sequences is required in the design of code-division multiple-access (CDMA) systems. In this paper, Boolean functions are used to construct nonlinear phase orthogonal sequence sets for CDMA communications. For even m, employing carefully designed an m-variable Boolean function with five-valued Walsh spectra, one can get 16 different orthogonal sequence sets with sequence length \(2^m\). These sequence sets are assigned to a lattice of regular hexagonal cells, and we can ensure the orthogonality of adjacent cells. Moreover, the cross-correlation values between the sequences in a given cell and the sequences in non-neighbouring cells belong to \(\{0,\pm 2^{\frac{m}{2}}, \pm 2^{\frac{m}{2}+1}\}\). On the other hand, the cardinality of the sequences sets is \(2^{m-3}\) thus implying a trade-off between the quality of communication and the number of users assigned to each cell. This method can be improved so that the number of users is increased to \(2^{m-2}\) in one half of the network while preserving the orthogonality between adjacent cells and the same level of low cross-correlation values to the non-neighbouring cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Hunt F.H., Smith D.H.: The construction of orthogonal variable spreading factor codes from semi-bent functions. IEEE Trans. Wirel. Commun. 11, 2970–2975 (2012).

    Google Scholar 

  2. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).

    MATH  Google Scholar 

  3. Rothaus O.S.: On bent functions. J. Comb. Theory 20, 300–305 (1976).

    Article  MATH  Google Scholar 

  4. Smith D.H., Ward R.P., Perkins S.: Gold codes, Hadamard partitions and the security of CDMA systems. Des. Codes Cryptogr. 51, 231–243 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  5. Smith D.H., Hunt F.H., Perkins S.: Exploiting spatial separations in CDMA systems with correlation constrained sets of Hadamard matrices. IEEE Trans. Inf. Theory 56, 5757–5761 (2010).

    Article  MATH  Google Scholar 

  6. Tang X., Mow W.H.: Design of spreading codes for quasi-synchronous CDMA with intercell interference. IEEE J. Sel. Areas Commun. 24, 84–93 (2006).

    Article  Google Scholar 

  7. Walsh J.L.: A closed set of normal orthogonal functions. Am. J. Math. 45, 5–24 (1923).

    Article  MathSciNet  MATH  Google Scholar 

  8. Yang K., Kim Y.-K., Kumar P.V.: Quasi-orthogonal sequences for code-division multiple-access systems. IEEE Trans. Inf. Theory 46, 982–993 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  9. Ye Z.F., Zhou Z.C., Lei X.F., Fan P.Z., Liu Z.L., Tang X.H.: Low ambiguity zone: theoretical bounds and Doppler-resilient sequence design in integrated sensing and communication systems. IEEE J. Sel. Areas Commun. 40, 1809–1822 (2022).

    Article  Google Scholar 

  10. Zhang W.-G., Pasalic E.: Generalized Maiorana-McFarland construction of resilient Boolean functions with high nonlinearity and good algebraic properties. IEEE Trans. Inf. Theory 60, 6681–6695 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang W.-G., Xie C.-L., Pasalic E.: Large sets of orthogonal sequences suitable for applications in CDMA systems. IEEE Trans. Inf. Theory 62, 3757–3767 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang W.-G., Pasalic E., Zhang L.-P.: Phase orthogonal sequence sets for (QS)CDMA communications. Des. Codes Cryptogr. 9, 1139–1156 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhou Z.C., Helleseth T., Udaya P.: A family of polyphase sequences with asymptotically optimal correlation. IEEE Trans. Inf. Theory 64, 2896–2900 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhou Z.C., Zhang D., Helleseth T., Wen J.M.: A construction of multiple optimal ZCZ sequence sets with good cross-correlation. IEEE Trans. Inf. Theory 64(2), 1340–1346 (2018).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

WeiGuo Zhang is partly supported by the National Natural Science Foundation of China (Grant 61972303, 62272360). Enes Pasalic is partly supported by the Slovenian Research Agency (research program P1-0404 and research projects J1-9108, J1-1694).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiGuo Zhang.

Additional information

Communicated by K.-U. Schmidt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The sets of orthogonal sequences \(H_{000}\), \(H_{001}\), \(\ldots \), \(H_{111}\) in Example 1 is given as below:

\(H_{000}\):

(++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++)

(++++++++——–++++++++——–++++++++——–++++++++——–)

(++++++++++++++++—————-++++++++++++++++—————-)

(++++++++—————-++++++++++++++++—————-++++++++)

(++++++++++++++++++++++++++++++++——————————–)

(++++++++——–++++++++—————-++++++++——–++++++++)

(++++++++++++++++——————————–++++++++++++++++)

(++++++++—————-++++++++——–++++++++++++++++——–)

\(H_{001}\):

(+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-)

(+-+-+-+–+-+-+-++-+-+-+–+-+-+-++-+-+-+–+-+-+-++-+-+-+–+-+-+-+)

(+-+-+-+-+-+-+-+–+-+-+-+-+-+-+-++-+-+-+-+-+-+-+–+-+-+-+-+-+-+-+)

(+-+-+-+–+-+-+-+-+-+-+-++-+-+-+-+-+-+-+–+-+-+-+-+-+-+-++-+-+-+-)

(+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+–+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+)

(+-+-+-+–+-+-+-++-+-+-+–+-+-+-+-+-+-+-++-+-+-+–+-+-+-++-+-+-+-)

(+-+-+-+-+-+-+-+–+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-)

(+-+-+-+–+-+-+-+-+-+-+-++-+-+-+–+-+-+-++-+-+-+-+-+-+-+–+-+-+-+)

\(H_{010}\):

(++–++–++–++–++–++–++–++–++–++–++–++–++–++–++–++–)

(++–++—-++–++++–++—-++–++++–++—-++–++++–++—-++–++)

(++–++–++–++—-++–++–++–++++–++–++–++—-++–++–++–++)

(++–++—-++–++–++–++++–++–++–++—-++–++–++–++++–++–)

(++–++–++–++–++–++–++–++—-++–++–++–++–++–++–++–++)

(++–++—-++–++++–++—-++–++–++–++++–++—-++–++++–++–)

(++–++–++–++—-++–++–++–++–++–++–++–++++–++–++–++–)

(++–++—-++–++–++–++++–++—-++–++++–++–++–++—-++–++)

\(H_{011}\):

(+–++–++–++–++–++–++–++–++–++–++–++–++–++–++–++–+)

(+–++–+-++–++-+–++–+-++–++-+–++–+-++–++-+–++–+-++–++-)

(+–++–++–++–+-++–++–++–++-+–++–++–++–+-++–++–++–++-)

(+–++–+-++–++–++–++-+–++–++–++–+-++–++–++–++-+–++–+)

(+–++–++–++–++–++–++–++–+-++–++–++–++–++–++–++–++-)

(+–++–+-++–++-+–++–+-++–++–++–++-+–++–+-++–++-+–++–+)

(+–++–++–++–+-++–++–++–++–++–++–++–++-+–++–++–++–+)

(+–++–+-++–++–++–++-+–++–+-++–++-+–++–++–++–+-++–++-)

\(H_{100}\):

(++++—-++++—-++++—-++++—-++++—-++++—-++++—-++++—-)

(++++——–++++++++——–++++++++——–++++++++——–++++)

(++++—-++++——–++++—-++++++++—-++++——–++++—-++++)

(++++——–++++—-++++++++—-++++——–++++—-++++++++—-)

(++++—-++++—-++++—-++++——–++++—-++++—-++++—-++++)

(++++——–++++++++——–++++—-++++++++——–++++++++—-)

(++++—-++++——–++++—-++++—-++++—-++++++++—-++++—-)

(++++——–++++—-++++++++——–++++++++—-++++——–++++)

\(H_{101}\):

(+-+–+-++-+–+-++-+–+-++-+–+-++-+–+-++-+–+-++-+–+-++-+–+-+)

(+-+–+-+-+-++-+-+-+–+-+-+-++-+-+-+–+-+-+-++-+-+-+–+-+-+-++-+-)

(+-+–+-++-+–+-+-+-++-+–+-++-+-+-+–+-++-+–+-+-+-++-+–+-++-+-)

(+-+–+-+-+-++-+–+-++-+-+-+–+-++-+–+-+-+-++-+–+-++-+-+-+–+-+)

(+-+–+-++-+–+-++-+–+-++-+–+-+-+-++-+–+-++-+–+-++-+–+-++-+-)

(+-+–+-+-+-++-+-+-+–+-+-+-++-+–+-++-+-+-+–+-+-+-++-+-+-+–+-+)

(+-+–+-++-+–+-+-+-++-+–+-++-+–+-++-+–+-++-+-+-+–+-++-+–+-+)

(+-+–+-+-+-++-+–+-++-+-+-+–+-+-+-++-+-+-+–+-++-+–+-+-+-++-+-)

\(H_{110}\):

(++—-++++—-++++—-++++—-++++—-++++—-++++—-++++—-++)

(++—-++–++++–++—-++–++++–++—-++–++++–++—-++–++++–)

(++—-++++—-++–++++—-++++–++—-++++—-++–++++—-++++–)

(++—-++–++++—-++++–++—-++++—-++–++++—-++++–++—-++)

(++—-++++—-++++—-++++—-++–++++—-++++—-++++—-++++–)

(++—-++–++++–++—-++–++++—-++++–++—-++–++++–++—-++)

(++—-++++—-++–++++—-++++—-++++—-++++–++—-++++—-++)

(++—-++–++++—-++++–++—-++–++++–++—-++++—-++–++++–)

\(H_{111}\):

(+–+-++-+–+-++-+–+-++-+–+-++-+–+-++-+–+-++-+–+-++-+–+-++-)

(+–+-++–++-+–++–+-++–++-+–++–+-++–++-+–++–+-++–++-+–+)

(+–+-++-+–+-++–++-+–+-++-+–++–+-++-+–+-++–++-+–+-++-+–+)

(+–+-++–++-+–+-++-+–++–+-++-+–+-++–++-+–+-++-+–++–+-++-)

(+–+-++-+–+-++-+–+-++-+–+-++–++-+–+-++-+–+-++-+–+-++-+–+)

(+–+-++–++-+–++–+-++–++-+–+-++-+–++–+-++–++-+–++–+-++-)

(+–+-++-+–+-++–++-+–+-++-+–+-++-+–+-++-+–++–+-++-+–+-++-)

(+–+-++–++-+–+-++-+–++–+-++–++-+–++–+-++-+–+-++–++-+–+)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Pasalic, E., Liu, Y. et al. A design and flexible assignment of orthogonal binary sequence sets for (QS)-CDMA systems. Des. Codes Cryptogr. 91, 373–389 (2023). https://doi.org/10.1007/s10623-022-01113-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01113-4

Keywords

Mathematics Subject Classification

Navigation