Skip to main content
Log in

Properties of the cycles that contain all vectors of weight \(\le k\)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We study the sequences whose one period contains all the n-binary vectors of Hamming weight \(\le k\) exactly once. It is well known that such sequences exist for any n and \(0\le k\le n\). However, their many basic properties and even their numbers are still unknown. A classical method for constructing such sequences is by joining the cycles generated by pure circulating registers, pure summing registers or complementing summing registers. In this paper, we show that, when \(k=2\) such sequences can all be constructed by joining cycles of pure circulating registers, but for \(n\ge 4\) and \(k\ge 3\) this is not the case any more. We also show that for \(n\ge 7\) and \(k\ge 3\), the sequences constructed by joining cycles of pure circulating registers are different from those constructed by joining cycles of pure summing registers or complementing summing registers. Besides, we do some experiments and determine the numbers of such sequences for some small n and k.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bitner J.R., Ehrlich G., Reingold E.M.: Efficient generation of the binary reflected Gray code and its applications. Commun. ACM 19(9), 517–521 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  2. Chung F., Diaconis P., Graham R.: Universal cycles for combinatorial structures. Discret. Math. 110(1–3), 43–59 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  3. Coppersmith, D., Rhoades, R.C., VanderKam, J.M.: Counting de Bruijn sequences as perturbations of linear recursions. arXiv (2017)

  4. Ehrlich G.: Loopless algorithms for generating permutations, combinations, and other combinatorial configurations. J. ACM (JACM) 20(3), 500–513 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  5. Etzion T.: Self-dual sequences. J. Comb. Theory Ser. A 44(2), 288–298 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  6. Etzion T., Lempel A.: Algorithms for the generation of full-length shift-register sequences. IEEE Trans. Inf. Theory 30(3), 480–484 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  7. Fredricksen H.: A class of nonlinear de Bruijn cycles. J. Comb. Theory Ser. A 19(2), 192–199 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  8. Fredricksen H.: A survey of full length nonlinear shift register cycle algorithms. SIAM Rev. 24(2), 195–221 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  9. Fredricksen H.: The number of nonlinear shift registers that produce all vectors of weight \(\le \) t. IEEE Trans. Inf. Theory 39(6), 1989–1990 (1993).

    Article  MATH  Google Scholar 

  10. Gilbert E.N., Riordan J.: Symmetry types of periodic sequences. Ill. J. Math. 5(1961), 657–665 (1961).

    MathSciNet  MATH  Google Scholar 

  11. Golomb S.W.: Shift Register Sequences, 3rd edn World Scientific, Singapore (2017).

    Book  MATH  Google Scholar 

  12. Golomb S.W., Peile R.E., Taylor H.: Nonlinear shift registers that produce all vectors of weight \(\le \) t. IEEE Trans. Inf. Theory 38(3), 1181–1183 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  13. Hauge E.R., Helleseth T.: De Bruijn sequences, irreducible codes and cyclotomy. Discret. Math. 159(1–3), 143–154 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  14. Hauge E.R., Mykkeltveit J.: On the classification of deBruijn sequences. Discret. Math. 148(1), 65–83 (1996).

    Article  MATH  Google Scholar 

  15. Kjeldsen K.: On the cycle structure of a set of nonlinear shift registers with symmetric feedback functions. J. Comb. Theory Ser. A 20(2), 154–169 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  16. Li C., Zeng X., Helleseth T., Li C., Lei H.: The properties of a class of linear FSRS and their applications to the construction of nonlinear FSRS. IEEE Trans. Inf. Theory 60(5), 3052–3061 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, M., Jiang, Y., Lin, D.: The numbers of de Bruijn sequences in extremal weight classes. In: 2020 IEEE International Symposium on Information Theory (ISIT), pp. 2909–2914. IEEE (2020)

  18. Li M., Lin D.: The adjacency graphs of LFSRs with primitive-like characteristic polynomials. IEEE Trans. Inf. Theory 63(2), 1325–1335 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  19. Magleby, K.B.: The synthesis of nonlinear feedback shift registers. PhD thesis, Stanford University (1963)

  20. Mayhew G.L.: Extreme weight classes of de Bruijn sequences. Discret. Math. 256(1), 495–497 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  21. Mykkeltveit J.: Generating and counting the double adjacencies in a pure circulating shift register. IEEE Trans. Comput. 100(3), 299–304 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  22. Peile R.E.: The analysis of partial truth tables. IEEE Trans. Inf. Theory 37(5), 1479–1486 (1991).

    Article  MathSciNet  Google Scholar 

  23. Ruskey F., Sawada J.: An efficient algorithm for generating necklaces with fixed density. SIAM J. Comput. 29(2), 671–684 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  24. Ruskey F., Sawada J., Williams A.: Binary bubble languages and cool-lex order. J. Comb. Theory Ser. A 119(1), 155–169 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  25. Ruskey F., Sawada J., Williams A.: De Bruijn sequences for fixed-weight binary strings. SIAM J. Discret. Math. 26(2), 605–617 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  26. Sawada, J., Stevens, B., Williams, A.: De Bruijn sequences for the binary strings with maximum density. In: International Workshop on Algorithms and Computation, pp. 182–190. Springer, New York (2011)

  27. Sawada, J., Williams, A.: Constructing the first (and coolest) fixed-content universal cycle. http://socs.uoguelph.ca/~sawada/papers/Cool_Fixed_Content_Ucycle.pdf.

  28. Sawada, J., Williams, A., Wong, D.: Universal cycles for weight-range binary strings. In: International Workshop on Combinatorial Algorithms, pp. 388–401. Springer, New York (2013)

  29. Sawada J., Williams A., Wong D.: The lexicographically smallest universal cycle for binary strings with minimum specified weight. J. Discret. Algorith. 28, 31–40 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  30. Sawada, J., Williams, A., Wong, D.: Generalizing the classic greedy and necklace constructions of de Bruijn sequences and universal cycles. Electron. J. Comb., pp. P1–24 (2016)

  31. Tang Z., Qi W., Tian T.: On characteristic functions of de Bruijn sequences. Chin. J. Electron. 25(2), 304–311 (2016).

  32. Van Lantschoot E.J.: Double adjacencies between cycles of a circulating shift register. IEEE Trans. Comput. 100(10), 944–955 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang Z., Hong X., Qi W.: On the cycle structure of some nonlinear feedback shift registers. Chin. J. Electron. 23(4), 801–804 (2014).

    Google Scholar 

Download references

Acknowledgements

We would like to thank the two anonymous reviewers and the Associated Editor for their many valuable suggestions. In particular, the use of Gray code to improve the efficiency of generating universal cycles is suggested by the second reviewer; moreover, he/she also suggested to prove Theorem 3 by analyzing the successors of low-weight states, which greatly simplified the original proof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yupeng Jiang.

Additional information

Communicated by J. Jedwab.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61902393, 61872359 and 61936008)

Appendix: A general bound for \(\mu _n(w)\)

Appendix: A general bound for \(\mu _n(w)\)

In this section, we given an improved bound for \(\mu _n(w)\). Firstly we show a property for combinatorial numbers.

Lemma 9

Let n and w be two integers such that \(n>4\) and \(w<n\). Suppose \(d=\gcd (n,w)>1\). Let p be the smallest prime divisor of d. Then we have

$$\begin{aligned} \left( {\begin{array}{c}n\\ w\end{array}}\right) >2(d-1)\left( {\begin{array}{c}n/p\\ w/p\end{array}}\right) . \end{aligned}$$

Proof

If \(\frac{w}{p}=1\), then we have \(w=d=p\) and

$$\begin{aligned} \left( {\begin{array}{c}n\\ w\end{array}}\right) =\left( {\begin{array}{c}n\\ p\end{array}}\right) \ge 2n>2(p-1)\frac{n}{p}=2(d-1)\left( {\begin{array}{c}n/p\\ w/p\end{array}}\right) . \end{aligned}$$

If \(\frac{w}{p}\ge 2\), then we have

$$\begin{aligned} \left( {\begin{array}{c}n\\ w\end{array}}\right)&=\prod _{i=0}^{w-1}\frac{n-i}{w-i} =\prod _{i=0}^{w/p-1}\prod _{j=0}^{p-1}\frac{n-(ip+j)}{w-(ip+j)} =\prod _{i=0}^{w/p-1}\prod _{j=0}^{p-1}\frac{(n/p-i)p-j}{(w/p-i)p-j}\\&=\prod _{i=0}^{w/p-1}\frac{(n/p-i)p}{(w/p-i)p}\cdot \prod _{i=0}^{w/p-1}\prod _{j=1}^{p-1}\frac{(n/p-i)p-j}{(w/p-i)p-j}\\&\ge \left( {\begin{array}{c}n/p\\ w/p\end{array}}\right) \prod _{i=0}^{w/p-1}\frac{(n/p-i)p-(p-1)}{(w/p-i)p-(p-1)}. \end{aligned}$$

Because

$$\begin{aligned} \prod _{i=0}^{w/p-1}\frac{(n/p-i)p-(p-1)}{(w/p-i)p-(p-1)}&\ge \prod _{i=w/p-1,w/p-2}\frac{(n/p-i)p-(p-1)}{(w/p-i)p-(p-1)}\\&=(n-w+1)\cdot \frac{n-w+p+1}{p+1}, \end{aligned}$$

for the proof of this lemma, we just need to show that \((n-w+1)\cdot \frac{n-w+p+1}{p+1}>2(d-1)\). Since \(d=\gcd (n,w)=\gcd (n,n-w)\) we know that \(d\le n-w\). If \(p=d=n-w\) then

$$\begin{aligned} (n-w+1)\cdot \frac{n-w+p+1}{p+1}=(p+1)\frac{p+p+1}{p+1}=2p+1>2(d-1). \end{aligned}$$

If \(p<n-w\) then

$$\begin{aligned} (n-w+1)\cdot \frac{n-w+p+1}{p+1}\ge (d+1)\frac{p+1+p+1}{p+1}>2(d-1). \end{aligned}$$

This completes the proof. \(\square \)

Theorem 4

For \(n>4\) and \(w<n\), we have \(\mu _n(w)<\frac{3}{2n}\left( {\begin{array}{c}n\\ w\end{array}}\right) \).

Proof

Denote by p the smallest prime divisor of \(d=\gcd (n,w)\). Then

$$\begin{aligned} \mu _n(w)&= \frac{1}{n}\sum _{r\mid d}\phi (r)\left( {\begin{array}{c}n/r\\ w/r\end{array}}\right) \\&=\frac{1}{n}\left( {\begin{array}{c}n\\ w\end{array}}\right) +\frac{1}{n}\sum _{r\mid d,r\ne 1}\phi (r)\left( {\begin{array}{c}n/r\\ w/r\end{array}}\right) \\&\le \frac{1}{n}\left( {\begin{array}{c}n\\ w\end{array}}\right) +\frac{d-1}{n}\left( {\begin{array}{c}n/p\\ w/p\end{array}}\right) \\&< \frac{1}{n}\left( {\begin{array}{c}n\\ w\end{array}}\right) +\frac{d-1}{n}\cdot \frac{1}{2(d-1)}\left( {\begin{array}{c}n\\ w\end{array}}\right) \\&=\frac{3}{2n}\left( {\begin{array}{c}n\\ w\end{array}}\right) . \end{aligned}$$

The last inequality is valid because of Lemma 9. \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Jiang, Y. & Lin, D. Properties of the cycles that contain all vectors of weight \(\le k\). Des. Codes Cryptogr. 91, 221–239 (2023). https://doi.org/10.1007/s10623-022-01100-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01100-9

Keywords

Navigation