Skip to main content
Log in

Sharper bounds on four lattice constants

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The Korkine–Zolotareff (KZ) reduction and its generalisations, are widely used lattice reduction strategies in communications and cryptography. The KZ constant and Schnorr’s constant were defined by Schnorr in 1987. The KZ constant can be used to quantify some useful properties of KZ reduced matrices. Schnorr’s constant can be used to characterize the output quality of his block 2k-reduction and is used to define his semi block 2k-reduction, which was also developed in 1987. Hermite’s constant, which is a fundamental lattice constant, has many applications, such as bounding the length of the shortest nonzero lattice vector and the orthogonality defect of lattices. Rankin’s constant was introduced by Rankin in 1953 as a generalization of Hermite’s constant. It plays an important role in characterizing the output quality of block-Rankin reduction, proposed by Gama et al. in 2006. In this paper, we first develop a linear upper bound on Hermite’s constant and then use it to develop an upper bound on the KZ constant. These upper bounds are sharper than those obtained recently by the authors, and the ratio of the new linear upper bound to the nonlinear upper bound, developed by Blichfeldt in 1929, on Hermite’s constant is asymptotically 1.0047. Furthermore, we develop lower and upper bounds on Schnorr’s constant. The improvement to the lower bound over the sharpest existing one developed by Gama et al. is around 1.7 times asymptotically, and the improvement to the upper bound over the sharpest existing one which was also developed by Gama et al. is around 4 times asymptotically. Finally, we develop lower and upper bounds on Rankin’s constant. The improvements of the bounds over the sharpest existing ones, also developed by Gama et al., are exponential in the parameter defining the constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agrell E., Eriksson T., Vardy A., Zeger K.: Closest point search in lattices. IEEE Trans. Inf. Theory 48(8), 2201–2214 (2002).

    Article  MathSciNet  Google Scholar 

  2. Ajtai M.: Optimal lower bounds for the Korkine-Zolotareff parameters of a lattice and for Schnorr’s algorithm for the shortest vector problem. Theory Comput. 4(1), 21–51 (2008).

    Article  MathSciNet  Google Scholar 

  3. Batir N.: Inequalities for the gamma function. Arch. Math. 91, 554–563 (2008).

    Article  MathSciNet  Google Scholar 

  4. Blichfeldt H.F.: The minimum value of quadratic forms, and the closest packing of spheres. Math. Ann. 101(1), 605–608 (1929).

    Article  MathSciNet  Google Scholar 

  5. Cohn H., Kumar A.: The densest lattice in twenty-four dimensions. Electron. Res. Announc. Am. Math. Soc. 10(7), 58–67 (2004).

    Article  MathSciNet  Google Scholar 

  6. Euler L.: Exercitationes analyticae. Novi commentarii academiae scientiarum Petropolitanae 173–204 (1773).

  7. Gama N., Howgrave-Graham N., Koy H., Nguyen P.Q.: Rankin’s constant and blockwise lattice reduction. In: Dwork C. (eds.) Advances in Cryptology—CRYPTO 2006. Lecture Notes in Computer Science, pp. 112– 130. Springer (2006).

  8. Gama N., Nguyen P.Q.: Finding short lattice vectors within Mordell’s inequality. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, pp. 207–216 (2008).

  9. Golub G., Van Loan C.: Matrix Computations, 4th edn Johns Hopkins, Baltimore (2013).

    MATH  Google Scholar 

  10. Hanrot G., Stehlé D.: Worst-case Hermite-Korkine-Zolotarev reduced lattice bases. arxiv preprint arxiv:0801.3331 (2008).

  11. Lagarias J.C., Lenstra H.W., Schnorr C.P.: Korkin-zolotarev bases and successive minima of a lattice and its reciprocal lattice. Combinatorica 10(4), 333–348 (1990).

    Article  MathSciNet  Google Scholar 

  12. Lehmer D.H.: Euler constants for arithmetical progressions. Acta Arith. 27(1), 125–142 (1975).

    Article  MathSciNet  Google Scholar 

  13. Ling C.: On the proximity factors of lattice reduction-aided decoding. IEEE Trans. Signal Process. 59(6), 2795–2808 (2011).

    Article  MathSciNet  Google Scholar 

  14. Luzzi L., Stehlé D., Ling C.: Decoding by embedding: correct decoding radius and DMT optimality. IEEE Trans. Inf. Theory 59(5), 2960–2973 (2013).

    Article  MathSciNet  Google Scholar 

  15. Lyu S., Ling C.: Boosted KZ and LLL algorithms. IEEE Trans. Signal Process. 65(18), 4784–4796 (2017).

    Article  MathSciNet  Google Scholar 

  16. Martinet J.: Perfect Lattices in Euclidean Spaces, vol. 327. Springer, Berlin (2013).

    MATH  Google Scholar 

  17. Micciancio D., Walter M.: Practical, predictable lattice basis reduction. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 820– 849. Springer (2016).

  18. Micciancio D., Regev O.: Lattice-based cryptography. In: Bernstein D.J., Buchmann J. (eds.) Post-Quantum Cryptography. Springer, Berlin (2008).

    MATH  Google Scholar 

  19. Neumaier A.: Bounding basis reduction properties. Des. Codes Cryptogr. 84(1–2), 237–259 (2017).

    Article  MathSciNet  Google Scholar 

  20. Nguyen P.Q., Vallée B. (eds.): The LLL Algorithm. Survey and Applications. Springer, Berlin (2010).

    MATH  Google Scholar 

  21. Ordentlich O., Erez U., Nazer B.: Successive integer-forcing and its sum-rate optimality. In: 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 282–292. IEEE (2013).

  22. Rankin R.A.: On positive definite quadratic forms. J. Lond. Math. Soc. 28, 309–314 (1953).

    Article  MathSciNet  Google Scholar 

  23. Sakzad A., Harshan J., Viterbo E.: Integer-forcing MIMO linear receivers based on lattice reduction. IEEE Trans. Wirel. Commun. 12(10), 4905–4915 (2013).

    Article  Google Scholar 

  24. Sawatani K., Watanabe T.: A note on the Hermite-Rankin constant. J. Thorie des Nombres de Bordeaux 22(1), 209–217 (2010).

    Article  MathSciNet  Google Scholar 

  25. Schnorr C.P.: A hierarchy of polynomial time lattice basis reduction algorithms. Theoret. Comput. Sci. 53, 201–224 (1987).

    Article  MathSciNet  Google Scholar 

  26. Thunder J.L.: Higher-dimensional analogs of Hermite’s constant. Mich. Math. J. 45(2), 301–314 (1998).

    Article  MathSciNet  Google Scholar 

  27. Wen J., Chang X., Weng J.: Improved upper bounds on the hermite and KZ constants. In: Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 1742– 1746 (2019).

  28. Wen J., Chang X.: On the KZ reduction. IEEE Trans. Inf. Theory 65(3), 1921–1935 (2019).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the two anonymous referees for their valuable and thoughtful suggestions, which improve the presentation of our work significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinming Wen.

Additional information

Communicated by S. D. Galbraith.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Part of the work was presented in 2019 IEEE International Symposium on Information Theory, July 7–12, Paris, France.

This work was partially supported by National Natural Science Foundation of China (No. 11871248), the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2019), Natural Science Foundation of Guangdong Province of China (2021A515010857, 2022A1515010029), Guangdong Major Project of Basic and Applied Basic Research (2019B030302008), and the Natural Sciences and Engineering Research Council of Canada (NSERC) Grant RGPIN-2017-05138.

Appendices

Appendix A Proof of Lemma 1

Proof

The left hand side of (14) is referred to as the midpoint rule for approximating the integral on the right hand side in numerical analysis. It is well known that

$$\begin{aligned} \int _a^b f(s) d s - (b-a) f\left( \frac{a+b}{2}\right) = \frac{1}{24}(b-a)^3 f''(z) \end{aligned}$$
(A.1)

for some \(z \in (a,b)\). This formula can be easily proved as follows. By Taylor’s theorem,

$$\begin{aligned} f(s) =&f\left( \frac{a+b}{2}\right) + f'\left( \frac{a+b}{2}\right) \Big (s- \frac{a+b}{2}\Big ) \\&+ \frac{1}{2} f''(\zeta (s)) \Big (s- \frac{a+b}{2}\Big )^2, \end{aligned}$$

where \(\zeta (s)\) depends on \(s\in (a, b)\). Integrating both sides of the above equality over [ab] and using the Mean-Value-Theorem for integrals immediately lead to (A.1). Then using the condition that \(f''(t)\ge 0\) for \(t\in [a,b]\), we obtain (14). \(\square \)

Appendix B Proof of Lemma 2

Proof

By some direct calculations, we have

$$\begin{aligned} f'(t)&\!=\frac{1}{t}\left[ \frac{1}{t+18}-\frac{1}{t} \ln \left( \frac{ t+18}{8.5} \right) \right] . \end{aligned}$$

Then,

$$\begin{aligned} f''(t)=\!\frac{g(t)}{t^3(t+18)^2}, \end{aligned}$$

where

$$\begin{aligned} g(t)= 2(t+18)^2\ln \left( \frac{t+18}{8.5}\right) -(3t^2+36t),\,\; t\ge 0. \end{aligned}$$

Hence, to show \(f''(t)> 0\), it sufficient to show that \(g(t)>0\) for \(t>0\).

By some direct calculations, we have

$$\begin{aligned} g'(t)=\&4(t+18)\ln \left( \frac{t+18}{8.5}\right) -4t,\\ g''(t)=\&4\ln \left( \frac{t+18}{8.5}\right) . \end{aligned}$$

Clearly, \(g''(t)>0\) when \(t\ge 0\), hence \(g'(t)\) is increasing with t. Furthermore, \(g'(0)>0\), therefore \(g'(t)>0\) for \(t\ge 0\). By some direct calculations, \(g(0)>0\). Therefore, \(g(t)>0\) for \(t> 0\). \(\square \)

Appendix C Proof of Corollary 1

Proof

Since

$$\begin{aligned} \frac{2^{3\ln 2}}{17^{2\ln 2}}<0.083216, \end{aligned}$$
(C.2)

by (26), to show (30), we show

$$\begin{aligned} \left( \frac{4x-1}{17} \right) ^\frac{1}{2x-1}<1.04521<\frac{0.08698}{0.083216}, \text{ for } \text{ integer } x\ge 5. \end{aligned}$$
(C.3)

Let

$$\begin{aligned} f(x)=\left( \frac{4x-1}{17} \right) ^\frac{1}{2x-1},\,\; x\ge 5, \end{aligned}$$

then

$$\begin{aligned} f(12)=1.045206\ldots <1.04521. \end{aligned}$$

Hence, to show Corollary 1, we only need to show that

$$\begin{aligned} f(x)\le f(12), \text{ for } \text{ any } \text{ integer } x\ge 5. \end{aligned}$$
(C.4)

To this end, let \(g(x)=\ln (f(x))\), then

$$\begin{aligned} g'(x)=\frac{(1-4x)\ln \frac{4x-1}{17}+4x-2}{(2x-1)^2(4x-1)}. \end{aligned}$$

Let

$$\begin{aligned} h(x)=(1-4x)\ln \frac{4x-1}{17}+4x-2, \,\; x\ge 5 \end{aligned}$$

then

$$\begin{aligned} h'(x)=-4\ln \frac{4x-1}{17}<0. \end{aligned}$$

Hence, h(x) is monotonically decreasing. Furthermore, by some direct calculations, one can show that \(h(11)>0, h(12)<0\), therefore, \(h(x)>0\) for \(x\le 11\) and \(h(x)<0\) for \(x\ge 12\). Hence \(g'(x)>0\) for \(x\le 11\) and \(g'(x)<0\) for \(x\ge 12\). Since \(g(x)=\ln (f(x))\), f(x) is increasing for \(x\le 11\) and decreasing for \(x\ge 12\), therefore (C.4) holds. \(\square \)

Appendix D Proof of Lemma 4

Proof

By the definition of \(\zeta (s)\), we have

$$\begin{aligned} \zeta (2)< 1+\sum _{n=2}^{\infty }\frac{1}{n(n-1)} =1+\sum _{n=2}^{\infty }\left( \frac{1}{n-1}-\frac{1}{n}\right) <2. \end{aligned}$$

Furthermore, for \(i\ge 3\), we have

$$\begin{aligned} \zeta (i)\le \zeta (3)<\frac{\pi ^2}{8}, \end{aligned}$$

where the second inequality follows from [6]. Then, we have

$$\begin{aligned} \prod _{i=2}^{k}\zeta (i)\le 2 \Big (\frac{\pi ^2}{8}\Big )^{k-2}=\pi ^{2(k-2)}2^{7-3k}. \end{aligned}$$

Since \(\zeta (i)>1\) for \(i\ge k+1\), we have

$$\begin{aligned} \frac{\prod _{i=k+1}^{2k}\zeta (i)}{\prod _{i=2}^{k}\zeta (i)} > \frac{1}{\prod _{i=2}^{k}\zeta (i)} \ge \pi ^{4-2k}2^{3k-7}. \end{aligned}$$

\(\square \)

Appendix E Proof of Lemma 5

Proof

By [3, Theorem 1.6], for \(x\ge 1\), we have

$$\begin{aligned} (x/e)^x\sqrt{2\pi x}<\Gamma (x+1)<(x/e)^x\sqrt{2\pi (x+1/2)}. \end{aligned}$$

Therefore,

$$\begin{aligned}&\frac{\prod _{i=k+1}^{2k}\Gamma (\frac{i}{2}+1)}{\prod _{i=2}^{k}\Gamma (\frac{i}{2}+1)}\nonumber \\&\quad > \frac{\prod _{i=k+1}^{2k}(i/2e)^{i/2}\sqrt{\pi i}}{\prod _{i=2}^{k}(i/2e)^{i/2}\sqrt{\pi (i+1)}}\nonumber \\&\quad = \sqrt{\pi }\sqrt{\frac{2(2k)!}{k!(k+1)!}}(2e)^{\frac{1}{2}(\sum _{i=2}^ki-\sum _{i=k+1}^{2k}i)} \sqrt{\frac{\prod _{i=k+1}^{2k}i^{i}}{\prod _{i=2}^{k}i^{i}}}\nonumber \\&\quad = \sqrt{\pi }\sqrt{\frac{2(2k)!}{k!(k+1)!}}(2e)^{-\frac{k^2+1}{2}} \sqrt{\frac{\prod _{i=k+1}^{2k}i^{i}}{\prod _{i=2}^{k}i^{i}}}\nonumber \\&\quad = \sqrt{\pi }2^{-\frac{k^2}{2}}e^{-\frac{k^2+1}{2}}\sqrt{\frac{(2k)!}{k!(k+1)!}} \sqrt{\frac{\prod _{i=k+1}^{2k}i^{i}}{\prod _{i=2}^{k}i^{i}}}. \end{aligned}$$
(E.5)

In the following, we give a lower bound on the last term of the right-hand side of (E.5). Since \(x\ln x\) is an increasing function for \(x\ge \frac{1}{e}\), we have

$$\begin{aligned}&\ln \left( \frac{\prod _{i=k+1}^{2k}i^{i}}{\prod _{i=2}^{k}i^{i}}\right) \\&\quad = \sum _{i=k+1}^{2k}i\ln i-\sum _{i=2}^ki\ln i\\&\quad \ge \sum _{i=k+1}^{2k}\int _{i-1}^i x\ln xdx-\sum _{i=2}^k\int _{i}^{i+1}x\ln xdx\\&\quad = \int _{k}^{2k} x\ln xdx-\int _{2}^{k+1}x\ln x dx\\&\quad = \Big [2k^2\ln (2k)-k^2-\frac{k^2\ln k}{2}+\frac{k^2}{4}\Big ]\\&\qquad -\Big [\frac{(k+1)^2\ln (k+1)}{2}-\frac{(k+1)^2}{4}-2\ln 2+1\Big ]\\&\quad \overset{(a)}{>} \Big (2k^2\ln k+2k^2\ln 2-\frac{k^2\ln k}{2}-\frac{3k^2}{4}\Big )\\&\qquad -\Big (\frac{(k^2+2k+1)\ln k}{2}+1-\frac{k^2}{4}\Big )\\&\quad =\frac{(2k^2-2k-1)}{2}\ln k+2k^2\ln 2-\frac{k^2+2}{2}, \end{aligned}$$

where (a) follows from the following inequalities,

$$\begin{aligned}&\frac{(k+1)^2\ln (k+1)}{2}-\frac{(k+1)^2}{4}-2\ln 2+1\\&\quad< \frac{(k+1)^2\ln k}{2}+\frac{(k+1)^2\ln (1+\frac{1}{k})}{2}-\frac{(k+1)^2}{4}\\&\quad < \frac{(k^2+2k+1)\ln k}{2}+\frac{(k^2+2k+1)\frac{1}{k}}{2}-\frac{(k+1)^2}{4}\\&\quad = \frac{(k^2+2k+1)\ln k}{2}+\frac{k}{2}+1+\frac{1}{2k}-\frac{k^2+2k+1}{4}\\&\quad \le \frac{(k^2+2k+1)\ln k}{2}+1-\frac{k^2}{4}, \end{aligned}$$

where the last inequality is from \(k\ge 2\). Hence, we have

$$\begin{aligned} \sqrt{\frac{\prod _{i=k+1}^{2n}i^{i}}{\prod _{i=2}^{k}i^{i}}} \ge 2^{k^2}e^{-\frac{k^2+2}{4}}k^{\frac{2k^2-2k-1}{4}}, \end{aligned}$$

which combines (E.5) imply (33). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, J., Chang, XW. Sharper bounds on four lattice constants. Des. Codes Cryptogr. 90, 1463–1484 (2022). https://doi.org/10.1007/s10623-022-01048-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01048-w

Keywords

Mathematics Subject Classification

Navigation