Skip to main content
Log in

On Pappus configurations in Hall planes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

As the finite Hall planes are Non-Desarguesian, the Pappus Theorem does not hold in them. In this paper we state and prove some weaker versions of Pappus’s Theorem in Hall planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Burn R.P.: Bol quasi-fields and Pappus’ theorem. Math. Z. 105(5), 351–364 (1968).

    Article  MathSciNet  Google Scholar 

  2. Caliskan C., Moorhouse G.E.: Subplanes of order \(3\) in hughes planes. Electron. J. Comb. 18(1)P2 (2011).

  3. Caliskan C., Petrak B.: Subplanes of order 3 in Figueroa planes. Finite Fields Appl. 20, 24–29 (2013).

    Article  MathSciNet  Google Scholar 

  4. Erdős P.: Some old and new problems in various branches of combinatorics. In: Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing Florida Atlantic University, Boca Raton, pp. 19–37 (1979).

  5. Hall M. Jr.: Projective planes. Trans. Am. Math. Soc. 54(2), 229–277 (1943).

    Article  MathSciNet  Google Scholar 

  6. Hall M. Jr.: Combinatorial Theory, 2nd edn Wiley, New York (1986).

    MATH  Google Scholar 

  7. Hall M. Jr.: The Theory of Groups. Courier Dover Publications, New York (2018).

    MATH  Google Scholar 

  8. Hughes D.: A note on some partially transitive projective planes. Proc. Am. Math. Soc. 8(5), 978–981 (1957).

    Article  MathSciNet  Google Scholar 

  9. Hughes D.: Collineation groups of non-desarguesian planes, I: the Hall Veblen-Wedderburn systems. Am. J. Math. 81(4), 921–938 (1959).

  10. Kallaher M.: Translation planes. In: Handbook of Incidence Geometry. North-Holland, Haarlem, pp 137–192 (1995).

  11. Lazebnik F., Mellinger K.E., Vega O.: Embedding cycles in finite planes. Electron. J. Comb. 20(3)P24, 1–17 (2013).

  12. Leshock L: Pappus configurations in finite Hall affine planes. Ph.D. Thesis, University of Delaware, pp. 1–84 (2020). https://sites.google.com/view/lleshock/research.

  13. Metsch K.: Linear Spaces with Few Lines. Lecture Notes in Mathematics. Springer, New York (1991).

    Book  Google Scholar 

  14. Moorhouse G.E.: http://www.ericmoorhouse.org/pub/index.html#planes. Accessed Feb 16 (2020).

  15. Moorhouse G.E., Williford J.: Embedding finite partial linear spaces in finite translation nets. J. Geom. 91(1–2), 73–83 (2009).

    Article  MathSciNet  Google Scholar 

  16. Ostrom T.: Transitivities in projective planes. Can. J. Math. 9, 389–399 (1957).

    Article  MathSciNet  Google Scholar 

  17. Ostrom T.: Translation planes and configurations in Desarguesian planes. Archiv. Math. 111(1), 457–464 (1960).

    Article  MathSciNet  Google Scholar 

  18. Petrak B.: Fano subplanes in finite Figueroa planes. J. Geom. 99(1–2), 101–106 (2010).

    Article  MathSciNet  Google Scholar 

  19. Petrak B.: Finite Figueroa Planes. University of Delaware, Newark (2012).

    MATH  Google Scholar 

  20. Pickert G.: Der Satz von Pappos mit Festelementen. Archiv. Math. 10(1), 56–61 (1959).

    Article  MathSciNet  Google Scholar 

  21. Tait M.: On a problem of Neumann. Discret. Math. 342(10), 2843–2845 (2019).

    Article  MathSciNet  Google Scholar 

  22. Welsh D.J.A.: Matroid Theory. Dover Publications, New York (2010).

    MATH  Google Scholar 

  23. Wolfram Research, Inc. Mathematica, 12.0. Champaign (2019).

Download references

Acknowledgements

This work was partially supported by the Simons Foundation Award ID: 426092 and the National Science Foundation Grant: 1855723. The authors are thankful to Eric Moorhouse for sharing his knowledge on Hall planes and, in particular, for correcting an error in the original description of the action of the collineation group on pairs of lines of the Hall plane. We are also thankful to Stefaan DeWinter, Bill Kantor, and Jason Williford for useful discussions on the topics of this paper. Finally, we are thankful to the anonymous referees for their useful comments, and, in particular, for suggesting the references [1, 20, 22].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Lazebnik.

Additional information

Communicated by Y. Zhou.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazebnik, F., Leshock, L. On Pappus configurations in Hall planes. Des. Codes Cryptogr. 90, 1203–1219 (2022). https://doi.org/10.1007/s10623-022-01036-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01036-0

Keywords

Mathematics Subject Classification

Navigation