Skip to main content
Log in

Isomorphism of maximum length circuit codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Douglas (J Comb Theory 6(4):323–339, 1969) proved that for odd spread k and dimension \(d={\frac{1}{2}(3k+3)}\) all maximum length (dk) circuit codes are isomorphic. Here we establish a similar result, showing that for spread k even \(\ge 4\) and dimension \(d=\frac{1}{2}(3k+4)\) all maximum length symmetric circuit codes are isomorphic, and provide an explicit construction for such codes. We also extend a recent result of Byrnes (Des Codes Cryptogr 87(11):2671–2681, 2019) to give an exact formula for the maximum length of a symmetric circuit code with a long bit run. Numerous examples investigate the conditions under which all maximum length circuit codes are isomorphic, showing that for k even \(\ge 4\) and \(d=\frac{1}{2}(3k+4)\) symmetry is a necessary condition, and that even with symmetry, isomorphism is not guaranteed when k is odd \(\ge 9\) and \(d=\frac{1}{2}(3k+5)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Extending this proof beyond the symmetric case requires also demonstrating asymmetric \((\frac{1}{2}(3k+3),k)\) circuit codes of length \(4k+4\) do not exist, which we have not done.

References

  1. Abbot H.L., Katchalski M.: On the construction of snake in the box codes. Utilit. Math. 40, 97–116 (1991).

    MathSciNet  MATH  Google Scholar 

  2. Allison D., Paulusma D.: New bounds for the snake-in-the-box problem. arXiv:1603.05119 (2016).

  3. Byrnes K.M.: A tight analysis of the submodular-supermodular procedure. Discret. Appl. Math. 186, 275–282 (2015).

    Article  MathSciNet  Google Scholar 

  4. Byrnes K.M.: A new method for constructing circuit codes. Bull. ICA 80, 40–60 (2017).

    MathSciNet  MATH  Google Scholar 

  5. Byrnes K.M.: The maximum length of circuit codes with long bit runs and a new characterization theorem. Des. Codes Cryptogr. 87(11), 2671–2681 (2019).

    Article  MathSciNet  Google Scholar 

  6. Byrnes K.M., Spinu F.: On the asymptotic order of circuit codes. Discret. Appl. Math. 301, 69–73 (2021).

    Article  MathSciNet  Google Scholar 

  7. Chebiryak Y., Kroening D.: An efficient SAT encoding of circuit codes. In: International Symposium on Information Theory and Its Applications (2008).

  8. Chien R., Freiman C.V., Tang D.T.: Error correction and circuits on the \(n\)-cube. In: Proceedings of the Second Annual Allerton Conference on Circuit and System Theory, pp. 899–912 (1964).

  9. Danzer L., Klee V.: Lengths of snakes in boxes. J. Comb. Theory 2(3), 258–265 (1967).

    Article  MathSciNet  Google Scholar 

  10. Douglas R.J.: Some results on the maximum length of circuits of spread k in the d-cube. J. Comb. Theory 6(4), 323–339 (1969).

    Article  MathSciNet  Google Scholar 

  11. Douglas R.J.: Upper bounds on the length of circuits of even spread in the d-cube. J. Comb. Theory 7, 206–214 (1969).

    Article  MathSciNet  Google Scholar 

  12. Emelyanov P., Lukito A.: On the maximal length of a snake in hypercubes of small dimension. Discret. Math. 218, 51–59 (2000).

    Article  MathSciNet  Google Scholar 

  13. Grünbaum B., Shephard G., Klee V.: Convex Polytopes. Springer-Verlag, New York (2003).

    Book  Google Scholar 

  14. Hiltgen A.P., Paterson K.G.: Single-track circuit codes. IEEE Trans. Inf. Theory 47(6), 2587–2595 (2001).

    Article  MathSciNet  Google Scholar 

  15. Holroyd A.E.: Perfect snake-in-the-box codes for rank modulation. IEEE Trans. Inf. Theory 63(1), 104–110 (2017).

    Article  MathSciNet  Google Scholar 

  16. Hood S., Recoskie D., Sawada J., Wong D.: Snakes, coils, and single-track circuit codes with spread k. J. Comb. Optim. 30(1), 42–62 (2013).

    Article  MathSciNet  Google Scholar 

  17. Kautz W.H.: Unit-distance error-checking codes. IRE Trans. Electron. Comput. 7, 179–180 (1958).

    Article  Google Scholar 

  18. Klee V.: A method for constructing circuit codes. J. ACM 14(3), 520–528 (1967).

    Article  MathSciNet  Google Scholar 

  19. Kochut K.J.: Snake-in-the-box-code for dimension 7. J. Comb. Math. Comb. Comput. 20, 175–185 (1996).

    MathSciNet  MATH  Google Scholar 

  20. Lukito A., van Zanten A.J.: A new non-asymptotic upper bound for snake-in-the-box codes. J. Comb. Math. Comb. Comput. 39, 147–156 (2001).

    MathSciNet  MATH  Google Scholar 

  21. Meyerson S.J., Whiteside W.E., Drapela T.E., Potter W.D.: Finding longest paths in hypercubes, snakes and coils. In: 2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES), pp. 103–109 (2014).

  22. Östergård P., Pettersson V.: On the maximum length of coil-in-the-box codes in dimension 8. Discret. Appl. Math. 179, 193–200 (2014).

    Article  MathSciNet  Google Scholar 

  23. Palombo A., Stern R., Puzis R., Felner A., Kiesel S., Ruml W.: Solving the snake in the box problem with heuristic search: first results. In: Symposium on Combinatorial Search (SOCS), pp. 96–104 (2015).

  24. Paterson K., Tuliani J.: Some new circuit codes. IEEE Trans. Inf. Theory 44(3), 1305–1309 (1998).

    Article  MathSciNet  Google Scholar 

  25. Preparata F.P., Nievergelt J.: Difference-preserving codes. IEEE Trans. Inf. Theory 20(5), 643–649 (1974).

    Article  MathSciNet  Google Scholar 

  26. Singleton R.C.: Generalized snake-in-the-box codes. IEEE Trans. Electron. Comput. 15, 596–602 (1966).

    Article  Google Scholar 

  27. Sloane N.J.A.: The on-line encyclopedia of integer sequences. http://oeis.org. Sequences A000937, A289424, A289425, A289426.

  28. Snevily H.: The snake-in-the-box problem: a new upper bound. Discret. Math. 133, 307–314 (1994).

    Article  MathSciNet  Google Scholar 

  29. Wang X., Fu F.W.: On the snake-in-the-box codes for rank modulation under Kendall’s \(\tau \)-metric. Des. Codes Cryptogr. 83, 455–465 (2017).

    Article  MathSciNet  Google Scholar 

  30. Wang X., Fu F.W.: Snake-in-the-Box codes under the \(\ell _{\infty }\)-metric for rank modulation. Des. Codes Cryptogr. 88, 487–503 (2020).

    Article  MathSciNet  Google Scholar 

  31. Wojciechowski J.: A new lower bound for snake-in-the-box codes. Combinatorica 9(1), 91–99 (1989).

    Article  MathSciNet  Google Scholar 

  32. Yehezkeally Y., Schwartz M.: Snake-in-the-Box codes for rank modulation. IEEE Trans. Inf. Theory 58(8), 5471–5483 (2012).

    Article  MathSciNet  Google Scholar 

  33. Zemor G.: An upper bound on the size of the snake-in-the-box. Combinatorica 17, 287–298 (1997).

    Article  MathSciNet  Google Scholar 

  34. Zinovik I., Chebiryak Y., Kroening D.: Periodic orbits and equilibria in Glass models for gene regulatory networks. IEEE Trans. Inf. Theory 56(2), 805–820 (2010).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author wishes to thank two anonymous referees for their thoughtful criticism and detailed feedback, which significantly improved the final version of this article. In particular, feedback from both referees led to the the investigation of Lemma 4.1, which greatly strengthened Theorem 1.4 compared to the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Byrnes.

Additional information

Communicated by J. H. Koolen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Examples of circuit codes

Appendix: Examples of circuit codes

Throughout this article, we consider (dk) circuit codes of the form: k odd and \(d=\frac{1}{2}(3k+3)\); k even \(\ge 4\) and \(d=\frac{1}{2}(3k+4)\); k odd \(\ge 9\) and \(d=\frac{1}{2}(3k+5)\). Table 1 presents all of the valid (dk) pairs of these forms for small values of k, where an “X” indicates an invalid (dk) combination.

Table 1 Valid (dk) pairs for small values of k

Below, we list the transition sequence of a maximum length symmetric (dk) circuit code for each (dk) pair in Table 1. The circuit codes are listed in the form (dkN) where N denotes the length of the circuit code (equal to K(dk) for each of the examples presented).

(3, 1, 8)

1, 2, 3, 2, 1, 2, 3, 2

(6, 3, 16)

1, 2, 3, 4, 5, 2, 6, 4, 1, 2, 3, 4, 5, 2, 6, 4

(8, 4, 22)

1, 2, 3, 4, 5, 6, 7, 2, 4, 8, 6, 1, 2, 3, 4, 5, 6, 7, 2, 4, 8, 6

(9, 5, 24)

1, 2, 3, 4, 5, 6, 7, 2, 8, 4, 9, 6, 1, 2, 3, 4, 5, 6, 7, 2, 8, 4, 9, 6

(11, 6, 30)

1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 4, 10, 6,11, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 4, 10, 6, 11, 8

(12, 7, 32)

1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 10, 4, 11, 6, 12, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 10, 4, 11, 6, 12, 8

(14, 8, 38)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 2, 4, 12, 6, 13, 8, 14, 10,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 2, 4, 12 ,6, 13, 8, 14, 10

(15, 9, 40)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 2, 12, 4, 13, 6, 14, 8, 15, 10,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 2, 12, 4, 13, 6, 14, 8, 15, 10

(16, 9, 44)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 2, 4, 6, 14, 8, 15, 10, 16, 12,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 2, 4, 6, 14, 8, 15, 10, 16, 12

(17, 10, 46)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 2, 4, 14, 6, 15, 8, 16, 10, 17, 12,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 2, 4, 14, 6, 15, 8, 16, 10, 17, 12

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byrnes, K.M. Isomorphism of maximum length circuit codes. Des. Codes Cryptogr. 90, 835–850 (2022). https://doi.org/10.1007/s10623-021-01005-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-021-01005-z

Keywords

Mathematics Subject Classification

Navigation