Skip to main content
Log in

The Eckardt point configuration of cubic surfaces revisited

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The classification problem for cubic surfaces with 27 lines is concerned with describing a complete set of the projective equivalence classes of such surfaces. Despite a long history of work, the problem is still open. One approach is to use a coarser equivalence relation based on geometric invariants. The Eckardt point configuration is one such invariant. It can be used as a coarse-grain case distinction in the classification problem. We provide an explicit parametrization of the equations of cubic surfaces with a given Eckardt point configuration over any field. Our hope is that this will be a step towards the bigger goal of classifying all cubic surfaces with 27 lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Betten A., Betten D.: Linear spaces with at most 12 points. J. Comb. Des. 7(2), 119–145 (1999).

    Article  MathSciNet  Google Scholar 

  2. Betten A., Karaoglu F.: Cubic surfaces over small finite fields. Des. Codes Cryptogr. 87(4), 931–953 (2019).

    Article  MathSciNet  Google Scholar 

  3. Cayley A.: On the triple tangent planes of surfaces of the third order. Camb. Dublin Math. J. 4, 118–138 (1849).

    Google Scholar 

  4. Clebsch A.: Die Geometrie auf den Flächen dritter Ordnung. J. Reine Angew. Math. 65, 359–380 (1866).

    MathSciNet  Google Scholar 

  5. Dickson L.E.: Projective classification of cubic surfaces modulo 2. Ann. Math. 16, 139–157 (1915).

    Article  MathSciNet  Google Scholar 

  6. Dolgachev I.V.: Classical Algebraic Geometry: A Modern View. Cambridge University Press, Cambridge (2012).

    Book  Google Scholar 

  7. Dolgachev I., Duncan A.: Automorphisms of cubic surfaces in positive characteristic. Izv. Ross. Akad. Nauk Ser. Mat. 83(3), 15–92 (2019).

    MathSciNet  MATH  Google Scholar 

  8. Eckardt F.E.: Über diejenigen Flächen dritten Grades, auf denen sich drei gerade Linien in einem Punkte schneiden. Math. Ann. 10, 227–272 (1876).

  9. Emch A.: Properties of the cubic surface derived from a new normal Form. Am. J. Math. 61(1), 115–122 (1939).

    Article  MathSciNet  Google Scholar 

  10. Emch A.: New point configurations and algebraic curves connected with them. Bull. Am. Math. Soc. 45, 731–735 (1939).

    Article  MathSciNet  Google Scholar 

  11. Hirschfeld J.W.P.: The double-six of lines over \(PG(3,\,4)\). J. Austral. Math. Soc. 4, 83–89 (1964).

    Article  MathSciNet  Google Scholar 

  12. Hirschfeld J.W.P.: Classical configurations over finite fields. I. The double-six and the cubic surface with \(27\) lines. Rend. Mat. Appl. 5(26), 115–152 (1967).

    MathSciNet  MATH  Google Scholar 

  13. Hirschfeld J.W.P.: del Pezzo surfaces over finite fields. Tensor (N.S.) 37(1), 79–84 (1982).

    MathSciNet  MATH  Google Scholar 

  14. Hirschfeld J.W.P.: Finite Projective Spaces of Three Dimensions. Oxford Mathematical Monographs. The Clarendon Press/Oxford University Press, New York (1985).

    Google Scholar 

  15. Karaoglu F., Betten A.: The number of cubic surfaces with 27 lines over a finite field. To appear in Journal of Algebraic Combinatorics.

  16. Manin Yu.I., Cubic Forms, Volume 4 of North-Holland Mathematical Library: Algebra, Geometry, Arithmetic. 2nd ed. North-Holland Publishing Co., Amsterdam. Translated from the Russian by M. Hazewinkel (1986).

  17. Maple 18. Maplesoft, a division of Waterloo Maple Inc., Waterloo (2018).

  18. Panizzut M., Sertöz E.C., Sturmfels B.: An octanomial model for cubic surfaces. Matematiche Catania 75(2), 517–536 (2020).

    MathSciNet  MATH  Google Scholar 

  19. Schläfli L.: An attempt to determine the twenty-seven lines upon a surface of the third order and to divide such surfaces into species in reference to the reality of the lines upon the surface. Quart. J. Math. 2, 55–110 (1858).

    Google Scholar 

  20. Segre B.: The Non-singular Cubic Surfaces. Oxford University Press, Oxford (1942).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Karaoglu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue: The Art of Combinatorics - A Volume in Honour of Aart Blokhuis”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betten, A., Karaoglu, F. The Eckardt point configuration of cubic surfaces revisited. Des. Codes Cryptogr. 90, 2159–2180 (2022). https://doi.org/10.1007/s10623-021-00999-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-021-00999-w

Keywords

Mathematics Subject Classification

Navigation