Skip to main content
Log in

Cameron–Liebler k-sets in subspaces and non-existence conditions

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this article we generalize the concepts that were used in the PhD thesis of Drudge to classify Cameron–Liebler line classes in PG\((n,q), n\ge 3\), to Cameron–Liebler sets of k-spaces in \({{\,\mathrm{\mathrm {PG}}\,}}(n,q)\) and \({{\,\mathrm{\mathrm {AG}}\,}}(n,q)\). In his PhD thesis, Drudge proved that every Cameron–Liebler line class in \({{\,\mathrm{\mathrm {PG}}\,}}(n,q)\) intersects every 3-dimensional subspace in a Cameron–Liebler line class in that subspace. We are using the generalization of this result for sets of k-spaces in \({{\,\mathrm{\mathrm {PG}}\,}}(n,q)\) and \({{\,\mathrm{\mathrm {AG}}\,}}(n,q)\). Together with a basic counting argument this gives a very strong non-existence condition, \(n\ge 3k+3\). This condition can also be improved for k-sets in \({{\,\mathrm{\mathrm {AG}}\,}}(n,q)\), with \(n\ge 2k+2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruen A.A., Drudge K.: The construction of Cameron–Liebler line classes in PG(\(3, q\)). Finite Fields Appl. 5(1), 35–45 (1999).

    Article  MathSciNet  Google Scholar 

  2. Blokhuis A., De Boeck M., D’haeseleer J.: Cameron–Liebler sets of \(k\)-spaces in \({{\rm PG}}(n, q)\). Des. Codes Cryptogr. 87(8), 1839–1856 (2019).

    Article  MathSciNet  Google Scholar 

  3. Cameron P.J., Liebler R.A.: Tactical decompositions and orbits of projective groups. Linear Algebra Appl. 46, 91–102 (1982).

    Article  MathSciNet  Google Scholar 

  4. D’haeseleer J., Mannaert J., Storme L., Švob A.: Cameron–Liebler line classes in AG(\(3, q\)). Finite Fields Appl. 67, 101706 (2020).

    Article  MathSciNet  Google Scholar 

  5. D’haeseleer J., Mannaert J., Ihringer F., Storme L.: Cameron–Liebler \(k\)-sets in AG(\(n, q\)). Electron. J. Comb. 28(4), 11 (2021).

    MathSciNet  MATH  Google Scholar 

  6. De Beule J., Demeyer J., Metsch K., Rodgers M.: A new family of tight sets in \({\cal{Q}}^+(5, q)\). Des. Codes Cryptogr. 78(3), 655–678 (2016).

    Article  MathSciNet  Google Scholar 

  7. Drudge K.: Extremal sets in projective and polar spaces. PhD thesis, The University of West Ontario, London (1998).

  8. Drudge K.: On a conjecture of Cameron and Liebler. Eur. J. Comb. 20(4), 263–269 (1999).

    Article  MathSciNet  Google Scholar 

  9. Feng T., Momihara K., Xiang Q.: Cameron–Liebler line classes with parameter \(x=\frac{q^2-1}{2}\). J. Comn. Theory Ser. A 133, 307–338 (2015).

    Article  Google Scholar 

  10. Feng T., Momihara K., Rodgers M., Xiang Q., Zou H.: Cameron–Liebler line classes with parameter \(x=\frac{(q+1)^2}{3}\). Adv. Math. 385, 107780 (2021).

    Article  Google Scholar 

  11. Filmus Y., Ihringer F.: Boolean degree 1 functions on some classical association schemes. J. Comb. Theory Ser. A 162, 241–270 (2019).

    Article  MathSciNet  Google Scholar 

  12. Gavrilyuk A.L., Metsch K.: A modular equality for Cameron–Liebler line classes. J. Comb. Theory Ser. A 127, 224–242 (2014).

    Article  MathSciNet  Google Scholar 

  13. Gavrilyuk A., Mogilnykh I.: Cameron–Liebler line classes in PG(\(n,4\)). Des. Codes Cryptogr. 73, 969–982 (2014).

    Article  MathSciNet  Google Scholar 

  14. Hirschfeld J.W.P.: Projective Geometries Over Finite Fields. Oxford Mathematical Monographs. The Clarendon Press, New York (1998).

    Google Scholar 

  15. Ihringer F.: Remarks on the Erdős matching conjecture for vector spaces. Eur. J. Comb. 94, 103306 (2021).

    Article  Google Scholar 

  16. Matkin I.: Cameron–Liebler line classes in \({\rm PG}(n,5)\). Trudy Inst. Mat. i Mekh. UrO RAN 24(2), 158–172 (2018).

    Article  MathSciNet  Google Scholar 

  17. Rodgers M.J.: On some new examples of Cameron–Liebler line classes. ProQuest LLC, Ann Arbor, MI, 2012. Thesis (Ph.D.), University of Colorado at Denver.

  18. Rodgers M.: Cameron–Liebler line classes. Des. Codes Cryptogr. 68(1–3), 33–37 (2013).

    Article  MathSciNet  Google Scholar 

  19. Segre B.: Lectures on Modern Geometry (with an appendix by L. Lombardo-Radice). Consiglio Nazionale delle Ricerche, Monografie Mathematiche. Edizioni Cremonese, Roma (1961).

Download references

Acknowledgements

The authors want to thank Alexander Gavrilyuk and Ferdinand Ihringer for their suggestions which improved the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Mannaert.

Additional information

Communicated by K. Metsch.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This section gives an alternative proof of Theorem 6.5 for \(k=1\). This is in fact interesting because this proof is based on similar arguments as the proof of Theorem 6.2. It is in our view nice to see that we can obtain this result by arguments that are not based on exploiting the connection between Cameron–Liebler k-sets in \({{\,\mathrm{\mathrm {AG}}\,}}(n,q)\) and \({{\,\mathrm{\mathrm {PG}}\,}}(n,q)\).

Keep in mind that this proof only works for \(k=1\), but if there is an equivalent of Theorem 2.15 for k-spaces, we could probably use the same technique as in Theorem 6.2. Our guess is that by using this technique the result stays the same as Theorem 6.5. yet it would be interesting to see these arguments, and we could of course be wrong.

1.1 For Cameron–Liebler line classes in \({{\,\mathrm{\mathrm {AG}}\,}}(n,q)\)

Theorem 8.1

[5, Theorems 6.5 and 6.8] Suppose that \({\mathcal {L}}\) is a Cameron–Liebler line class of parameter x in \({{\,\mathrm{\mathrm {AG}}\,}}(n,q)\), for \(n\ge 3\), then the following statements are true.

  • If \(x=1\), then \({\mathcal {L}}\) is a point-pencil.

  • The parameter x cannot be 2.

Here we state a stronger result for Cameron–Liebler line classes in \({{\,\mathrm{\mathrm {AG}}\,}}(n,q)\).

Theorem 8.2

Suppose that \({\mathcal {L}}\) is a Cameron–Liebler line class of parameter x in \({{\,\mathrm{\mathrm {AG}}\,}}(n,q)\), with \(n\ge 4\), then \(x\in \{0, 1\}\) or \(x\ge 2\left( \frac{q^{n-1}-1}{q^{2}-1}\right) +1.\)

Proof

Suppose that \({\mathcal {L}}\) is a Cameron–Liebler line class in \({{\,\mathrm{\mathrm {AG}}\,}}(n,q)\), which is not empty nor a point-pencil. Hence, by Theorem 8.1, \(x>2\). Choose a line \(\ell \in {\mathcal {L}}\). Then, by Lemma 4.2, for \(3\le t \le n-1\),

$$\begin{aligned} x=\frac{q^{t-2}-1}{q^{n-2}-1}\frac{\sum _{\ell \in \pi _i} x_{\pi _i}}{\genfrac[]{0.0pt}{}{n-3}{t-3}_q}-\frac{q^{n-1}-1}{q^{t-1}-1}+1. \end{aligned}$$
(11)

We now have the following facts:

  1. 1.

    Since \(\ell \in {\mathcal {L}}\), every Cameron–Liebler line class in every t-dimensional subspace \(\pi _i\) has parameter \(x_{\pi _i}\ge 1\).

  2. 2.

    If there exists a t-space where \({\mathcal {L}}\cap [\pi _i]_1\) has parameter \(x_{\pi _i}=1\), then, by Theorem 8.1, it is a point-pencil. Hence, by Theorem 3.7, it follows that \({\mathcal {L}}\) is a point-pencil. So we may suppose that \(x_{\pi _i}>1\).

  3. 3.

    Using Theorem 8.1, we know that \(x_{\pi _i}>2\).

So, we conclude that for every t-space \(\pi _i\) through \(l\in {\mathcal {L}}\), it holds that \(x_{\pi _i}\ge 3\). So, using Eq. (11), we obtain that

$$\begin{aligned} \begin{aligned} x&=\frac{q^{t-2}-1}{q^{n-2}-1}\frac{\sum _{\ell \in \pi _i} x_{\pi _i}}{\genfrac[]{0.0pt}{}{n-3}{t-3}_q}-\frac{q^{n-1}-1}{q^{t-1}-1}+1 \\&\ge \frac{q^{t-2}-1}{q^{n-2}-1}\frac{3\genfrac[]{0.0pt}{}{n-1}{t-1}_q}{\genfrac[]{0.0pt}{}{n-3}{t-3}_q}-\frac{q^{n-1}-1}{q^{t-1}-1}+1 \\&\ge 3 \left( \frac{q^{n-1}-1}{q^{t-1}-1} \right) -\frac{q^{n-1}-1}{q^{t-1}-1}+1\\&\ge 2\left( \frac{q^{n-1}-1}{q^{t-1}-1}\right) +1\\&\ge 2\left( \frac{q^{n-1}-1}{q^{2}-1}\right) +1, \end{aligned} \end{aligned}$$

where in the last line, we have chosen \(t=3\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beule, J.D., Mannaert, J. & Storme, L. Cameron–Liebler k-sets in subspaces and non-existence conditions. Des. Codes Cryptogr. 90, 633–651 (2022). https://doi.org/10.1007/s10623-021-00995-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-021-00995-0

Keywords

Navigation