Skip to main content
Log in

Efficient quantum homomorphic encryption scheme with flexible evaluators and its simulation

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Quantum homomorphic encryption (QHE) allows computation on encrypted data by employing the principles of quantum mechanics. Usually, only one evaluator is chosen to complete such computation and it is easy to get overburdened in network. In addition, users sometimes do not trust only one evalutor. Recently, Chen et al. proposed a very flexible QHE scheme based on the idea of (kn)-threshold quantum state sharing where d evaluators can finish the required operations by cooperating together as long as \( k \le d \le n\). But it can only calculate some of single-qubit unitary operations when \(k\ge 2\) and the quantum capability of each evaluator is a bit demanding. In this paper, we propose an improved flexible QHE scheme which extends the operations that can be computed in the QHE scheme proposed by Chen et al. to involve all single-qubit unitary operations even if \(k \ge 2\) and reduces the quantum capability of at least \(d-1\) evaluators. We also give an example to show the feasibility of the improved scheme and simulate it on the IBM’s cloud quantum computing platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alagic G., Dulek Y., Schaffner C., Speelman F.: Quantum fully homomorphic encryption with verification. Adv. Cryptol. 2017, 438–467 (2017).

    MathSciNet  MATH  Google Scholar 

  2. Broadbent A., Jeffery S.: Quantum homomorphic encryption for circuits of low T-gate complexity. Adv. Cryptol. 2015, 609–629 (2015).

  3. Broadbent A., Schaffner C.: Quantum cryptography beyond quantum key distribution. Des. Codes Cryptogr. 78, 351–382 (2016).

    Article  MathSciNet  Google Scholar 

  4. Chen X.B., Sun Y.R., Xu G., Yang Y.X.: Quantum homomorphic encryption scheme with flexible number of evaluator based on (\(k\), \(n\))-threshold quantum state sharing. Inf. Sci. 501, 172–181 (2019).

    Article  MathSciNet  Google Scholar 

  5. Chen L., Li Q., Liu C., Peng Y., Yu F.: Efficient mediated semi-quantum key distribution. Physica A 582, 126265 (2021).

    Article  MathSciNet  Google Scholar 

  6. Dulek Y., Schaffner C., Speelman F.: Quantum homomorphic encryption for polynomial-sized circuits. Adv. Cryptol. 2016, 3–32 (2016).

    MathSciNet  MATH  Google Scholar 

  7. Fisher K.A.G., Broadbent A., Shalm L.K., Yan Z., Lavoie J., Prevedel R., Jennewein T., Resch K.J.: Quantum computing on encrypted data. Nat. Commun. 5, 3074 (2014).

    Article  Google Scholar 

  8. Fitzsimons J.F., Kashefi E.: Unconditionally verifiable blind quantum computation. Phys. Rev. A 96, 12303 (2017).

    Article  Google Scholar 

  9. Kimble H.J.: The quantum internet. Nature 453, 1023–1030 (2008).

    Article  Google Scholar 

  10. Kong X.Q., Li Q., Wu C.H., Yu F., He J.J., Sun Z.Y.: Multiple-server flexible blind quantum computation in networks. Int. J .Theor. Phys. 55, 3001–3007 (2016).

    Article  Google Scholar 

  11. Lai C.Y., Chung K.M.: On statistically-secure quantum homomorphic encryption. Quantum Inf. Comput. 18, 785–794 (2017).

    MathSciNet  Google Scholar 

  12. Lai C.Y., Chung K.M.: Quantum encryption and generalized Shannon impossibility. Des. Codes Cryptogr. 87, 1961–1972 (2019).

    Article  MathSciNet  Google Scholar 

  13. Li Q., Chan W.H., Wu C.H., Wen Z.H.: Triple-server blind quantum computation using entanglement swapping. Phys. Rev. A 89, 040302 (2014).

    Article  Google Scholar 

  14. Liang M.: Symmetric quantum fully homomorphic encryption with perfect security. Quantum Inf. Process. 12, 3675–3687 (2013).

    Article  MathSciNet  Google Scholar 

  15. Liang M.: Quantum fully homomorphic encryption scheme based on universal quantum circuit. Quantum Inf. Process. 14, 2749–2759 (2015).

    Article  MathSciNet  Google Scholar 

  16. Mahadev U.: Classical homomorphic encryption for quantum circuits. In IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 332–338 (2018).

  17. Marshall K., Jacobsen C.S., Schäfermeier C., Gehring T., Weedbrook C., Andersen U.L.: Continuous-variable quantum computing on encrypted data. Nat. Commun. 7, 13795 (2016).

    Article  Google Scholar 

  18. Moreno M.G.M., Brito S., Nery R.V., Chaves R.: Device-independent secret sharing and a stronger form of Bell nonlocality. Phys. Rev. A 101, 52339 (2020).

    Article  MathSciNet  Google Scholar 

  19. Nielsen M., Chuang I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2011).

    MATH  Google Scholar 

  20. Oliveira M., Nape I., Pinnell J., TabeBordbar N., Forbes A.: Experimental high-dimensional quantum secret sharing with spin-orbit-structured photons. Phys. Rev. A 101, 42303 (2020).

    Article  Google Scholar 

  21. Ouyang Y., Tan S.H., Zhao L., Fitzsimons J.F.: Computing on quantum shared secrets. Phys. Rev. A 96, 052333 (2017).

    Article  Google Scholar 

  22. Ouyang Y., Tan S.H., Fitzsimons J.F.: Quantum homomorphic encryption from quantum codes. Phys. Rev. A 98, 42334 (2018).

    Article  Google Scholar 

  23. Pati A.K., Agrawal P.: Special issue on quantum information theory. Quantum Inf. Process. 11, 637–638 (2012).

    Article  MathSciNet  Google Scholar 

  24. Senthoor K., Sarvepalli P.K.: Communication efficient quantum secret sharing. Phys. Rev. A 100, 52313 (2019).

    Article  Google Scholar 

  25. Tan S.H., Kettlewell J.A., Ouyang Y., Chen L., Fitzsimons J.F.: A quantum approach to homomorphic encryption. Sci. Rep. 6, 33467 (2016).

    Article  Google Scholar 

  26. Wang Y., She K., Luo Q., Yang F., Zhao C.: Symmetric ternary quantum homomorphic encryption schemes based on the ternary quantum one-time pad. ArXiv preprint arXiv:1505.02854 (2015).

  27. Wojciech, K., Stephanie, W.: Towards large-scale quantum networks. In Proceedings of the Sixth Annual ACM International Conference on Nanoscale Computing and Communication, pp. 1–7 (2019).

  28. Xu G., Xiao K., Li Z.P., Niu X.X., Ryan M.: Controlled secure direct communication protocol via the three-qubit partially entangled set of states. CMC-Comput. Mater. Contin. 58, 809–827 (2019).

    Article  Google Scholar 

  29. Yu L., Pérez-Delgado C.A., Fitzsimons J.F.: Limitations on information-theoretically-secure quantum homomorphic encryption. Phys. Rev. A 90, 050303 (2014).

    Article  Google Scholar 

  30. Zhang J.W., Chen X.B., Xu G., Yang Y.X.: Universal quantum circuit evaluation on encrypted data using probabilistic quantum homomorphic encryption scheme. Chin. Phys. B 30, 70309–070309 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported the Key Project of Hunan Province Education Department (Grant No. 20A471), the Natural Science Foundation of Hunan Province (Grant Nos. 2018JJ2403, 2020JJ4750), the National Natural Science Foundation of China (Grant Nos. U1736113, 61972418), and H. Situ is supported by Guangdong Basic and Applied Basic Research Foundation (Grant No. 2020A1515011204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Li.

Additional information

Communicated by A. Winterhof.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, Q., Quan, J. et al. Efficient quantum homomorphic encryption scheme with flexible evaluators and its simulation. Des. Codes Cryptogr. 90, 577–591 (2022). https://doi.org/10.1007/s10623-021-00993-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-021-00993-2

Keywords

Mathematics Subject Classification

Navigation