Skip to main content
Log in

Nonexistence of perfect permutation codes under the Kendall \(\tau \)-metric

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In the rank modulation scheme for flash memories, permutation codes have been studied. In this paper, we study perfect permutation codes in \(S_n\), the set of all permutations on n elements, under the Kendall \(\tau \)-metric. We answer one open problem proposed by Buzaglo and Etzion. That is, proving the nonexistence of perfect codes in \(S_n\), under the Kendall \(\tau \)-metric, for more values of n. Specifically, we present the polynomial representation of the size of a ball in \(S_n\) under the Kendall \(\tau \)-metric for some radius r, and obtain some sufficient conditions of the nonexistence of perfect permutation codes. Further, we prove that there does not exist a perfect t-error-correcting code in \(S_n\) under the Kendall \(\tau \)-metric for some n and \(t=2,3,4,5,~\text {or}~\frac{5}{8}\left( {\begin{array}{c}n\\ 2\end{array}}\right) < 2t+1\le \left( {\begin{array}{c}n\\ 2\end{array}}\right) \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barg A., Mazumdar A.: Codes in permutations and error correction for rank modulation. IEEE Trans. Inf. Theory 56, 3158–3165 (2010).

    Article  MathSciNet  Google Scholar 

  2. Buzaglo S., Etzion T.: Bounds on the size of permutation codes with the Kendall \(\tau \)-metric. IEEE Trans. Inf. Theory 61, 3241–3250 (2015).

    Article  MathSciNet  Google Scholar 

  3. Deza M., Huang H.: Metrics on permutations, a survey. J. Comb. Inf. Syst. Sci. 23, 173–185 (1998).

    MathSciNet  MATH  Google Scholar 

  4. Farnoud F., Skachek V., Milenkovic O.: Error-correction in falsh memories via codes in the Ulam metric. IEEE Trans. Inf. Theory 59, 3003–3020 (2013).

    Article  Google Scholar 

  5. Gerschgorin S.: Uber die abgrenzung der eigenwerte einer matrix. Izv. Akad. Nauk. USSR Otd. Fiz.-Mat. Nauk. 7, 749–754 (1931).

    MATH  Google Scholar 

  6. Horvitz M., Etzion T.: Constructions of snake-in-the-box codes for rank modulation. IEEE Trans. Inf. Theory 60, 7016–7025 (2014).

    Article  MathSciNet  Google Scholar 

  7. Jiang A., Mateescu R., Schwartz M., Bruck J.: Rank modulation for flash memories. IEEE Trans. Inf. Theory 55, 2659–2673 (2009).

    Article  MathSciNet  Google Scholar 

  8. Jiang A., Schwartz M., Bruck J.: Correcting charge-constrained errors in the rank-modulation scheme. IEEE Trans. Inf. Theory 56, 2112–2120 (2010).

    Article  MathSciNet  Google Scholar 

  9. Kløve T., Lin T.T., Tsai S.C., Tzeng W.G.: Permutation arrays under the Chebyshev distance. IEEE Trans. Inf. Theory 56, 2611–2617 (2010).

    Article  MathSciNet  Google Scholar 

  10. Sloane N.J.A.: The On-Line Encyclopedia of Integer Sequences. \(A008302\). Triangle of Mahonian numbers \(T(n,k)\).

  11. Vijayakumaran S.: Largest permutation codes with the Kendall \(\tau \)-metric in \(S_5\) and \(S_6\). IEEE Commun. Lett. 20, 1912–1915 (2016).

    Article  Google Scholar 

  12. Wang X., Fu F.-W.: On the snake-in-the-box codes for rank modulation under Kendall’s \(\tau \)-metric. Des. Codes Cryptogr. 83, 455–465 (2017).

    Article  MathSciNet  Google Scholar 

  13. Wang X., Fu F.-W.: Snake-in-the-box codes under the \(\ell _{\infty }\)-metric for rank modulation. Des. Codes Cryptogr. 88, 487–503 (2020).

    Article  MathSciNet  Google Scholar 

  14. Wang X., Zhang Y.W., Yang Y.T., Ge G.N.: New bounds of permutation codes under Hamming metric and Kendall’s \(\tau \)-metric. Des. Codes Cryptogr. 85, 533–545 (2017).

    Article  MathSciNet  Google Scholar 

  15. Yehezkeally Y., Schwartz M.: Snake-in-the-box codes for rank modulation. IEEE Trans. Inf. Theory 58, 5471–5483 (2012).

    Article  MathSciNet  Google Scholar 

  16. Zhang Y.W., Ge G.N.: Snake-in-the-box codes for rank modulation under Kendall’s \(\tau \)-metric. IEEE Trans. Inf. Theory 62, 151–158 (2016).

    Article  Google Scholar 

  17. Zhou H., Jiang A., Bruck J.: Systematic error-correcting codes for rank modulation. In: Proceedings on IEEE International Symposium in Information Theory, pp. 2978–2982 (2012).

  18. Zhou H., Schwartz M., Jiang A., Bruck J.: Systematic error-correcting codes for rank modulation. IEEE Trans. Inf. Theory 61, 17–32 (2015).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratefulness to the editor and the two anonymous reviewers for their valuable suggestions and comments which have greatly improved this paper. X. Wang is supported by the National Natural Science Foundation of China (Grant No. 12001134) and the National Natural Science Foundation of China - Join Fund of Basic Research of General Technology (Grant U1836111). F.-W. Fu is supported by the National Key Research and Development Program of China (Grant No. 2018YFA0704703), the National Natural Science Foundation of China (Grant No. 61971243), the Natural Science Foundation of Tianjin (20JCZDJC00610), and the Fundamental Research Funds for the Central Universities of China (Nankai University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjuan Yin.

Additional information

Communicated by Y. Zhou.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The purpose of this appendix is to prove Lemma 21 given in Section 5.2.

Proof

We choose any permutation \(\beta \in L_i(\pi )\). Then \(\beta \) is obtained by applying some t adjacent transpositions and at most \(5-t\) adjacent transpositions on the former \(i-1\) elements of \(\pi \) and the latter \(n-i\) elements of \(\pi \), respectively, where \(0\le t\le 5\). Thus, these operations can produce \(S_{K}^{i-1}(t)B_K^{n-i}(5-t)\) permutations. If \(t\ge \left( {\begin{array}{c}i-1\\ \lfloor \frac{i-1}{2}\rfloor \end{array}}\right) \), we have \(S_{K}^{i-1}(t)=0\). So, the size of the first kind of permutations is \(\sum _{t=0}^{5}S_{K}^{i-1}(t)B_K^{n-i}(5-t)\).

Next, we choose \(\pi =[2,1,3,\ldots ,n]\in S_{n,2}\) such that \(\pi (i)=i\) for all \(i\ge 3\). By Lemma 10, we obtain \(R_2=|R_2(\pi )|\). If \(\sigma \in R_2(\pi )\), then we have \(\sigma (1)=3,4,~\text {or}~5\). When \(\sigma (1)=3\), we can obtain that elements 2 and 3 are exchanged and this operation needs at least 3 adjacent transpositions. Then the number of this kind of permutations in \(R_2(\pi )\) is \(B_K^{n-2}(2)\). When \(\sigma (1)=4\), we have that elements 2 and 4 are exchanged and this operation needs at least 4 adjacent transpositions. Hence, the number of this kind of permutations in \(R_2(\pi )\) is \(B_K^{n-2}(1)\). When \(\sigma (1)=5\), we obtain that elements 2 and 5 are exchanged and this operation needs at least 5 adjacent transpositions. Hence, the number of this kind of permutations in \(R_2(\pi )\) is \(B_K^{n-2}(0)\). So when \(i=2\), we obtain that \(R_2=B_K^{n-2}(2)+B_K^{n-2}(1)+B_K^{n-2}(0)\). By Lemma 18, when \(i=n-1\), we also get \(R_{n-1}=B_K^{n-2}(2)+B_K^{n-2}(1)+B_K^{n-2}(0)\).

Similarly, when \(i=3\) or \(n-2\), we can obtain that \(R_i=B_K^{n-3}(2)+3B_K^{n-3}(1)+3\). When \(4\le i\le n-3\), we can prove that \(R_i=\sum _{t=0}^{2}S_{K}^{i-1}(t)\cdot B_K^{n-i}(2-t)+2\sum _{t=0}^{1}S_{K}^{i-1}(t)B_K^{n-i}(1-t)+2\).\(\square \)

Appendix B

The purpose of this appendix is to prove Lemma 22 given in Sect. 5.3.

Proof

In order to obtain this result, we first prove that when \(1\le p<q\) and \(p+q\le \frac{1}{2}\left( {\begin{array}{c}n\\ 2\end{array}}\right) \), then

$$\begin{aligned} S_K^{n}(p)+S_K^{n}(q-1)<S_K^n(q)+S_K^n(p-1) \end{aligned}$$
(35)

by induction for all \(n\ge 6\).

When \(n=6\), we obtain \(\left( {\begin{array}{c}6\\ 2\end{array}}\right) =15\). By Lemma 4, we compute \(S_K^6(t)\) to obtain that \(S_K^6(0)=1,S_K^6(1)=5,S_K^6(2)=14,S_K^6(3)=29,S_K^6(4)=49,S_K^6(5)=71,S_K^6(6)=90,S_K^6(7)=101\). Hence, when \(n=6\), we clearly have that \(S_K^{6}(p)+S_K^{6}(q-1)<S_K^6(q)+S_K^6(p-1)\) for \(1\le p<q\le 7\) and \(p+q\le 7\). So when \(n=6\), \(S_K^6(t)\) satisfies the condition in (35).

Now we assume that \(S_K^m(t)\) satisfies the condition in (35) for some integers \(m\ge 6\), that is, if \(1\le p<q\) and \(p+q\le \frac{1}{2}\left( {\begin{array}{c}m\\ 2\end{array}}\right) \), then

$$\begin{aligned} S_K^{m}(p)+S_K^{m}(q-1)<S_K^m(q)+S_K^m(p-1). \end{aligned}$$
(36)

When \(n=m+1\), by Lemma 4, we obtain

$$\begin{aligned} S_K^{m+1}(q)=S_K^{m+1}(q-1)+S_K^m(q)-S_K^m(q-m-1)\\ S_K^{m+1}(p)=S_K^{m+1}(p-1)+S_K^m(p)-S_K^m(p-m-1) \end{aligned}$$

for \(1\le p<q\) and \(p+q\le \frac{1}{2}\left( {\begin{array}{c}m+1\\ 2\end{array}}\right) \). Hence, we have

$$\begin{aligned}&S_K^{m+1}(q)+S_K^{m+1}(p-1)+S_K^m(p)+S_K^m(q-m-1)=S_K^{m+1}(q-1)\nonumber \\&\qquad +S_K^{m+1}(p)+S_K^m(q)+S_K^m(p-m-1). \end{aligned}$$
(37)

Using the induction hypothesis on \(S_K^m(q)\), we can obtain some results as follows. When \(p\ge m+1\), then \(1\le p-m<q\) and \(p+q-m-1<\frac{1}{2}\left( {\begin{array}{c}m\\ 2\end{array}}\right) -\frac{m}{2}-1\). Thus, by (36), we have

$$\begin{aligned} S_K^m(p-m)+S_K^m(q-1)<S_K^m(q)+S_K^m(p-m-1). \end{aligned}$$
(38)

Since \(q-1\ge \max \{p,q-m-1\}\), by (36), then \(S_K^m(p)+S_K^m(q-m-1)<S_{K}^m(p-m)+S_K^m(q-1)\). Hence, by (38), we obtain \(S_K^m(p)+S_K^m(q-m-1)<S_{K}^m(q)+S_K^m(p-m-1)\).

When \(p<m+1\), then \(S_K^m(p-m-1)=0\). If \(q<m+1\), we also have \(S_K^m(q-m-1)=0\). Since \(p<q\), then \(S_K^m(p)<S_K^m(q)\). If \(q\ge m+1\), then \(1\le p,q-m\) and \(p+q-m<\frac{1}{2}\left( {\begin{array}{c}m\\ 2\end{array}}\right) -\frac{m}{2}\). Hence, by (36), we obtain \(S_K^m(p)+S_K^m(q-m)\le S_K^m(p+q-m)\). Assume \(q\le \frac{1}{2}\left( {\begin{array}{c}m\\ 2\end{array}}\right) \), then \(p+q-m\le q\). Since \(S_K^m(t)\) is an increasing sequence for all \(0\le t\le \frac{n}{2}\left( {\begin{array}{c}m\\ 2\end{array}}\right) \), then \(S_K^m(p+q-m)\le S_K^m(q)\). Assume \(\frac{1}{2}\left( {\begin{array}{c}m\\ 2\end{array}}\right) <q\) and \(p+q\le \frac{1}{2}\left( {\begin{array}{c}m+1\\ 2\end{array}}\right) \), then \(\left( {\begin{array}{c}m\\ 2\end{array}}\right) -q<\frac{1}{2}\left( {\begin{array}{c}m\\ 2\end{array}}\right) \). By Lemma 2, \(S_K^m(q)=S_{K}^{m}(\left( {\begin{array}{c}m\\ 2\end{array}}\right) -q)\). Since \(p+q-m<\left( {\begin{array}{c}m\\ 2\end{array}}\right) -q<\left( {\begin{array}{c}m\\ 2\end{array}}\right) \), we also have \(S_K^m(p)+S_K^m(q-m-1)<S_K^m(p)+S_K^m(q-m)\le S_K^m(p+q-m)<S_K^m(\left( {\begin{array}{c}m\\ 2\end{array}}\right) -q)=S_K^m(q)\). By the above discussion, we always have \(S_K^m(p)+S_K^m(q-m-1)<S_K^{m}(q)+S_K^m(p-m-1)\) for \(0\le p<q\) and \(p+q\le \frac{1}{2}\left( {\begin{array}{c}m+1\\ 2\end{array}}\right) \). By (37), we obtain that

$$\begin{aligned} S_K^{m+1}(q-1)+S_K^{m+1}(p)<S_K^{m+1}(q)+S_K^{m+1}(p-1), \end{aligned}$$

for \(1\le p<q\) and \(p+q\le \frac{1}{2}\left( {\begin{array}{c}m+1\\ 2\end{array}}\right) \). So, by induction, if \(1\le p<q\) and \(p+q\le \frac{1}{2}\left( {\begin{array}{c}n\\ 2\end{array}}\right) \), then

$$\begin{aligned} S_K^{n}(p)+S_K^{n}(q-1)<S_K^n(q)+S_K^n(p-1). \end{aligned}$$
(39)

By (39), we obtain

$$\begin{aligned} S_K^{n}(p+q-t)+S_K^{n}(t)<S_K^{n}(p+q-t+1)+S_K^{n}(t-1) \end{aligned}$$

for all \(1\le t\le p<q\) and \(p+q\le \frac{1}{2}\left( {\begin{array}{c}n\\ 2\end{array}}\right) \). Hence, we can get

$$\begin{aligned} S_K^{n}(p)+S_K^{n}(q)+p-1<S_K^{n}(p+q)+S_K^{n}(0) \end{aligned}$$

for \(1\le p<q\) and \(p+q\le \frac{1}{2}\left( {\begin{array}{c}n\\ 2\end{array}}\right) \). Since \(S_K^{n}(0)=1\), then we have

$$\begin{aligned} S_K^{n}(p)+S_K^{n}(q)+p-2<S_K^{n}(p+q) \end{aligned}$$

for \(1\le p<q\) and \(p+q\le \frac{1}{2}\left( {\begin{array}{c}n\\ 2\end{array}}\right) \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, Y., Yin, W. et al. Nonexistence of perfect permutation codes under the Kendall \(\tau \)-metric. Des. Codes Cryptogr. 89, 2511–2531 (2021). https://doi.org/10.1007/s10623-021-00934-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-021-00934-z

Keywords

Mathematics Subject Classification

Navigation