Skip to main content
Log in

On the properties of generalized cyclotomic binary sequences of period \(2p^m\)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Xiao, Zeng, Li and Helleseth proposed new generalized cyclotomic binary sequences \(s^{\infty }\) of period \(p^m\) and showed that these sequences are almost balanced and have very large linear complexity if p is a non-Wieferich prime and \(m=2\). Wu, Xu, Chen and Ke determined the values of the k-error linear complexity for \(m=2\) in terms of the theory of Fermat quotients and the results indicated that sequences \(s^{\infty }\) have good stability. Edemskiy, Li, Zeng and Helleseth studied the linear complexity of \(s^{\infty }\) for general integers \(m\ge 2\). Furthermore, Ouyang and Xie constructed new \(2p^{m}\)-periodic binary sequences \({\widehat{s}}^{\infty }\) and \({\widetilde{s}}^{\infty }\) and proved that the sequences \({\widehat{s}}^{\infty }\) and \({\widetilde{s}}^{\infty }\) are of high linear complexity when \(m\ge 2\). In this paper we shall show that despite a high linear complexity the sequences \(s^{\infty }\), \({\widehat{s}}^{\infty }\) and \({\widetilde{s}}^{\infty }\) have some undesirable features which may not suggest them for cryptography. The properties of multiplicative character sums modulo \(p^m\) play an important role in the proof of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apostol T.M.: Introduction to Analytic Number Theory. Springer, New York (1976).

    Book  Google Scholar 

  2. Bai E., Liu X., Xiao G.: Linear complexity of new generalized cyclotomic sequences of order two of length \(pq\). IEEE Trans. Inf. Theory 51, 1849–1853 (2005).

    Article  MathSciNet  Google Scholar 

  3. Cusick T.W., Ding C., Renvall A.: Stream Ciphers and Number Theory, North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam (1998).

    MATH  Google Scholar 

  4. Ding C.: Linear complexity of generalized cyclotomic binary sequences of order \(2\). Finite Fields Appl. 3, 159–174 (1997).

    Article  MathSciNet  Google Scholar 

  5. Ding C.: Autocorrelation values of generalized cyclotomic sequences of order two. IEEE Trans. Inf. Theory 44, 1699–1702 (1998).

    Article  MathSciNet  Google Scholar 

  6. Ding C.: Cyclotomic constructions of cyclic codes with length being the product of two primes. IEEE Trans. Inf. Theory 58, 2231–2236 (2012).

    Article  MathSciNet  Google Scholar 

  7. Ding C., Helleseth T.: New generalized cyclotomy and its applications. Finite Fields Appl. 4, 140–166 (1998).

    Article  MathSciNet  Google Scholar 

  8. Edemskiy V., Li C., Zeng X., Helleseth T.: The linear complexity of generalized cyclotomic binary sequences of period \(p^n\). Des. Codes Cryptogr. 87, 1183–1197 (2019).

    Article  MathSciNet  Google Scholar 

  9. Edemskiy V., Sokolovskii N.: The linear complexity of generalized cyclotomic binary and quaternary sequences of period \(2p^m\). In: SETA 2020.

  10. Fan P.Z., Darnell M.: Sequence Design for Communications Applications. Wiley, New York (1996).

    Google Scholar 

  11. Golomb S.W., Gong G.: Signal Design for Good Correlation: For Wireless Communications Cryptography and Radar Applications. Cambridge University Press, Cambridge (2005).

    Book  Google Scholar 

  12. Hu L., Yue Q., Wang M.: The linear complexity of Whiteman’s generalized cyclotomic sequences of period \(p^{m+1}q^{n+1}\). IEEE Trans. Inf. Theory. 58, 5534–5543 (2012).

    Article  Google Scholar 

  13. Ke P., Zhang S.: New classes of quaternary cyclotomic sequence of length \(2p^m\) with high linear complexity. Inf. Process. Lett. 112, 646–650 (2012).

    Article  Google Scholar 

  14. Li S., Chen Z., Sun R., Xiao G.: On the randomness of generalized cyclotomic sequences of order two and length \(pq\). IEICE Trans. Fund. Electron. E90-A, 2037–2041 (2007).

  15. Ouyang Y., Xie X.: Linear complexity of generalized cyclotomic sequences of period \(2p^m\). Des. Codes Cryptogr. 87, 2585–2596 (2019).

    Article  MathSciNet  Google Scholar 

  16. Wu C., Xu C.,Chen Z., P. Ke.: On error linear complexity of new generalized cyclotomic binary sequences of period \(p^2\). Inf. Process. Lett. 144, 9–15 (2019).

  17. Xiao Z., Zeng X., Li C., Helleseth T.: New generalized cyclotomic binary sequences of period \(p^2\). Des. Codes Cryptogr. 86, 1483–1497 (2018).

    Article  MathSciNet  Google Scholar 

  18. Yan T., Du X., Xiao G., Huang X.: Linear complexity of binary Whiteman generalized cyclotomic sequences of order \(2^k\). Sci. China Inf. Sci. 179, 1019–1023 (2009).

    MATH  Google Scholar 

  19. Ye Z., Ke P., Wu C.: A further study of the linear complexity of new binary cyclotomic sequence of length \(p^r\). Appl. Algebra Eng. Commun. Comput. 30, 217–231 (2019).

    Article  Google Scholar 

  20. Zeng X., Cai H., Tang X., Yang Y.: Optimal frequency hopping sequences of odd length. IEEE Trans. Inf. Theory. 59, 3237–3248 (2013).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Arne Winterhof for careful reading of the manuscript and many helpful suggestions, and would like to express their gratitude to the referees and coordinating editor for their valuable and detailed comments. This work was supported by National Natural Science Foundation of China under Grant No. 12071368, and the Science and Technology Program of Shaanxi Province of China under Grant No. 2019JM-573 and 2020JM-026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaning Liu.

Additional information

Communicated by C. Ding.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Lemma 1

We only prove (9) since similarly we can get (10). Let \(\chi ^*\) be a generator of the group of characters modulo \(p^m\), and let \(\displaystyle \chi _u=\left( \chi ^*\right) ^{\delta _u}\), where \(1\le \delta _u\le \phi (p^m)-1\) for \(u=1,2,3, 4\). We get

$$\begin{aligned}&\sum _{n=1}^{p^m}\chi _1\left( n\right) \chi _2\left( n+2p^{\frac{m}{2}}\right) \chi _3\left( n+4p^{\frac{m}{2}}\right) \chi _4\left( n+6p^{\frac{m}{2}}\right) \\&\quad =\sum _{n=1}^{p^m}\chi ^*\left( n^{\delta _1}\left( n+2p^{\frac{m}{2}}\right) ^{\delta _2} \left( n+4p^{\frac{m}{2}}\right) ^{\delta _3}\left( n+6p^{\frac{m}{2}}\right) ^{\delta _4}\right) \\&\quad =\mathop {\sum _{y=1}^{p^{\frac{m}{2}}}}_{(y,p)=1}\sum _{z=1}^{p^{\frac{m}{2}}} \chi ^*\left( (y+zp^{\frac{m}{2}})^{\delta _1}\left( y+zp^{\frac{m}{2}}+2p^{\frac{m}{2}}\right) ^{\delta _2}\right. \\&\qquad \times \left. \left( y+zp^{\frac{m}{2}}+4p^{\frac{m}{2}}\right) ^{\delta _3}\left( y+zp^{\frac{m}{2}}+6p^{\frac{m}{2}}\right) ^{\delta _4}\right) \\&\quad =\mathop {\sum _{y=1}^{p^{\frac{m}{2}}}}_{(y,p)=1}\sum _{z=1}^{p^{\frac{m}{2}}} \chi ^*\left( (y^{\delta _1}+\delta _1y^{\delta _1-1}zp^{\frac{m}{2}})(y^{\delta _2}+\delta _2y^{\delta _2-1}(z+2)p^{\frac{m}{2}}) \right. \\&\qquad \times \left. (y^{\delta _3}+\delta _3y^{\delta _3-1}(z+4)p^{\frac{m}{2}}) (y^{\delta _4}+\delta _4y^{\delta _4-1}(z+6)p^{\frac{m}{2}})\right) \\&\quad =\mathop {\sum _{y=1}^{p^{\frac{m}{2}}}}_{(y,p)=1}\chi ^*\left( y^{\delta _1+\delta _2+\delta _3+\delta _4}\right) \sum _{z=1}^{p^{\frac{m}{2}}}\chi ^*\left( (1+\delta _1y^{-1}zp^{\frac{m}{2}}) (1+\delta _2y^{-1}(z+2)p^{\frac{m}{2}})\right. \\&\qquad \times \left. (1+\delta _3y^{-1}(z+4)p^{\frac{m}{2}}) (1+\delta _4y^{-1}(z+6)p^{\frac{m}{2}}) \right) . \end{aligned}$$

Obviously \(\chi ^*\left( 1+up^{\frac{m}{2}}\right) \) is a primitive additive character modulo \(p^{\frac{m}{2}}\), so there is uniquely an integer \(\beta \) such that \(1\le \beta \le p^{\frac{m}{2}}\), \((\beta , p)=1\) and

$$\begin{aligned} \chi ^*\left( 1+up^{\frac{m}{2}}\right) =e\left( \frac{\beta u}{p^{\frac{m}{2}}}\right) , \end{aligned}$$
(20)

where \(e(y)=\hbox {e}^{2\pi iy}\). Hence,

$$\begin{aligned}&\sum _{n=1}^{p^m}\chi _1\left( n\right) \chi _2\left( n+2p^{\frac{m}{2}}\right) \chi _3\left( n+4p^{\frac{m}{2}}\right) \chi _4\left( n+6p^{\frac{m}{2}}\right) \\&\quad =\mathop {\sum _{y=1}^{p^{\frac{m}{2}}}}_{(y,p)=1}\chi ^*\left( y^{\delta _1+\delta _2+\delta _3+\delta _4}\right) \\&\qquad \times \sum _{z=1}^{p^{\frac{m}{2}}}e\left( \frac{\beta \left( \delta _1y^{-1}z+\delta _2y^{-1}(z+2) +\delta _3y^{-1}(z+4)+\delta _4y^{-1}(z+6)\right) }{p^{\frac{m}{2}}}\right) . \end{aligned}$$

Note that

$$\begin{aligned} \sum _{z=1}^{p^{\frac{m}{2}}}e\left( \frac{\beta \left( \delta _1+\delta _2+\delta _3+\delta _4\right) y^{-1}z}{p^{\frac{m}{2}}}\right) =\left\{ \begin{array}{ll} p^{\frac{m}{2}}, &{}\quad \hbox {if } \delta _1+\delta _2+\delta _3+\delta _4\equiv 0\ \left( \bmod \ p^{\frac{m}{2}}\right) , \\ 0, &{}\quad \hbox {otherwise}. \end{array} \right. \end{aligned}$$

If \(\delta _1+\delta _2+\delta _3+\delta _4\not \equiv 0\ \left( \bmod \ p^{\frac{m}{2}}\right) \), then

$$\begin{aligned} \sum _{n=1}^{p^m}\chi _1\left( n\right) \chi _2\left( n+2p^{\frac{m}{2}}\right) \chi _3\left( n+4p^{\frac{m}{2}}\right) \chi _4\left( n+6p^{\frac{m}{2}}\right) =0. \end{aligned}$$
(21)

If \(\delta _1+\delta _2+\delta _3+\delta _4\equiv 0\ \left( \bmod \ p^{\frac{m}{2}}\right) \), we have

$$\begin{aligned}&\sum _{n=1}^{p^m}\chi _1\left( n\right) \chi _2\left( n+2p^{\frac{m}{2}}\right) \chi _3\left( n+4p^{\frac{m}{2}}\right) \chi _4\left( n+6p^{\frac{m}{2}}\right) \\&\quad =p^{\frac{m}{2}} \mathop {\sum _{y=1}^{p^{\frac{m}{2}}}}_{(y,p)=1}(\chi ^*)^{\delta _1+\delta _2+\delta _3+\delta _4}\left( y\right) e\left( \frac{\beta \left( 2\delta _2+4\delta _3+6\delta _4\right) y^{-1}}{p^{\frac{m}{2}}}\right) . \end{aligned}$$

Clearly \((\chi ^*)^{\delta _1+\delta _2+\delta _3+\delta _4}\) is a multiplicative character modulo \(p^{\frac{m}{2}}\) since \(\delta _1+\delta _2+\delta _3+\delta _4\equiv 0\ \left( \bmod \ p^{\frac{m}{2}}\right) \). By the properties of Gauss sums we get

$$\begin{aligned}&\sum _{n=1}^{p^m}\chi _1\left( n\right) \chi _2\left( n+2p^{\frac{m}{2}}\right) \chi _3\left( n+4p^{\frac{m}{2}}\right) \chi _4\left( n+6p^{\frac{m}{2}}\right) \nonumber \\&\quad =p^{\frac{m}{2}} \mathop {\sum _{y=1}^{p^{\frac{m}{2}}}}_{(y,p)=1}\overline{\chi ^*}^{\delta _1+\delta _2+\delta _3+\delta _4}\left( y\right) e\left( \frac{\beta \left( 2\delta _2+4\delta _3+6\delta _4\right) y}{p^{\frac{m}{2}}}\right) \nonumber \\&\quad =\left\{ \begin{array}{ll} p^{m}+O\left( p^{m-1}\right) , &{}\quad \hbox {if } \phi (p^m)\mid \delta _1+\delta _2+\delta _3+\delta _4 \hbox { and } p^{\frac{m}{2}}\mid \delta _2+2\delta _3+3\delta _4, \\ O\left( p^{m-1}\right) , &{}\quad \hbox {if } \phi (p^m)\mid \delta _1+\delta _2+\delta _3+\delta _4 \hbox { and } p^{\frac{m}{2}}\not \mid \delta _2+2\delta _3+3\delta _4, \\ O\left( p^{m-\frac{1}{2}}\right) , &{}\quad \hbox {if } \phi (p^m)\not \mid \delta _1+\delta _2+\delta _3+\delta _4. \end{array}\right. \end{aligned}$$
(22)

Now combining (21) and (22) we immediately have

$$\begin{aligned}&\sum _{n=1}^{p^m}\chi _1\left( n\right) \chi _2\left( n+2p^{\frac{m}{2}}\right) \chi _3\left( n+4p^{\frac{m}{2}}\right) \chi _4\left( n+6p^{\frac{m}{2}}\right) \nonumber \\&\quad =\left\{ \begin{array}{ll} p^{m}+O\left( p^{m-1}\right) , &{}\quad \hbox {if } \chi _1\chi _2\chi _3\chi _4 \hbox { and } \left( \chi _2\chi _3^2\chi _4^3\right) ^{\phi (p^{\frac{m}{2}})} \hbox { are trivial}, \\ O\left( p^{m-\frac{1}{2}}\right) , &{}\quad \hbox {otherwise}. \end{array}\right. \end{aligned}$$

This proves (9).

Appendix B: Proof of Lemma 2

We get

$$\begin{aligned} \varOmega _{d,m}=&\mathop {\mathop {\mathop { \sum _{|k_1|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_1} \mathop {\sum _{|k_2|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_2} \mathop {\sum _{|k_3|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_3} \mathop {\sum _{|k_4|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_4} }_{k_1+k_2+k_3+k_4\equiv 0 (\bmod dp^{m-1})} }_{k_2+2k_3+3k_4\equiv 0 (\bmod p^{\frac{m}{2}})}\\&\times \frac{1}{\left( 1-e\left( \frac{k_1}{dp^{m-1}}\right) \right) \left( 1-e\left( \frac{k_2}{dp^{m-1}}\right) \right) \left( 1-e\left( \frac{k_3}{dp^{m-1}}\right) \right) \left( 1-e\left( \frac{k_4}{dp^{m-1}}\right) \right) }. \end{aligned}$$

For \(\theta \in {\mathbb {R}}\setminus {\mathbb {Z}}\) we have

$$\begin{aligned} \frac{1}{1-e(\theta )}=&\frac{1}{1-\hbox {e}^{2\pi i\theta }}=\frac{1}{1-\cos 2\pi \theta -i\sin 2\pi \theta } =\frac{1}{2}+\frac{i}{2}\cot \pi \theta . \end{aligned}$$

Hence,

$$\begin{aligned} \varOmega _{d,m}&=\mathop {\mathop { \mathop {\sum _{|k_1|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_1} \mathop {\sum _{|k_2|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_2} \mathop {\sum _{|k_3|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_3} \mathop {\sum _{|k_4|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_4} }_{k_1+k_2+k_3+k_4\equiv 0 (\bmod dp^{m-1})} }_{k_2+2k_3+3k_4\equiv 0 (\bmod p^{\frac{m}{2}})} \left( \frac{1}{2}+\frac{i}{2}\cot \pi \frac{k_1}{dp^{m-1}}\right) \\&\quad \times \left( \frac{1}{2}+\frac{i}{2}\cot \pi \frac{k_2}{dp^{m-1}}\right) \left( \frac{1}{2}+\frac{i}{2}\cot \pi \frac{k_3}{dp^{m-1}}\right) \left( \frac{1}{2}+\frac{i}{2}\cot \pi \frac{k_4}{dp^{m-1}}\right) \\&=\frac{1}{16}\mathop {\mathop { \mathop {\sum _{|k_1|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_1} \mathop {\sum _{|k_2|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_2} \mathop {\sum _{|k_3|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_3} \mathop {\sum _{|k_4|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_4} }_{k_1+k_2+k_3+k_4\equiv 0 (\bmod dp^{m-1})} }_{k_2+2k_3+3k_4\equiv 0 (\bmod p^{\frac{m}{2}})} \cot \pi \frac{k_1}{dp^{m-1}}\cot \pi \frac{k_2}{dp^{m-1}}\nonumber \\&\quad \times \cot \pi \frac{k_3}{dp^{m-1}}\cot \pi \frac{k_4}{dp^{m-1}} +O\left( d^3p^{3m-3}(\log p^m)^3\right) . \end{aligned}$$

It is not hard to show that

$$\begin{aligned}&\mathop {\mathop { \mathop {\sum _{\frac{p^{\frac{m}{2}}}{16}+1\le |k_1|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_1} \mathop {\sum _{|k_2|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_2} \mathop {\sum _{|k_3|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_3} \mathop {\sum _{|k_4|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_4} }_{k_1+k_2+k_3+k_4\equiv 0 (\bmod dp^{m-1})} }_{k_2+2k_3+3k_4\equiv 0 (\bmod p^{\frac{m}{2}})} \cot \pi \frac{k_1}{dp^{m-1}}\\&\qquad \times \cot \pi \frac{k_2}{dp^{m-1}}\cot \pi \frac{k_3}{dp^{m-1}}\cot \pi \frac{k_4}{dp^{m-1}}\\&\quad \ll dp^{m-1-\frac{m}{2}}\mathop {\mathop { \mathop {\sum _{\frac{p^{\frac{m}{2}}}{16}+1\le |k_1|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_1} \mathop {\sum _{|k_2|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_2} \mathop {\sum _{|k_3|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_3} \mathop {\sum _{|k_4|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_4} }_{k_1+k_2+k_3+k_4\equiv 0 (\bmod dp^{m-1})} }_{k_2+2k_3+3k_4\equiv 0 (\bmod p^{\frac{m}{2}})}\\&\qquad \times \frac{1}{\left<\frac{k_2}{dp^{m-1}}\right>\left<\frac{k_3}{dp^{m-1}}\right>\left<\frac{k_4}{dp^{m-1}}\right>}\\&\quad \ll dp^{m-1-\frac{m}{2}} \mathop {\sum _{|k_2|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_2} \mathop {\sum _{|k_3|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_3} \mathop {\sum _{|k_4|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_4} \frac{1}{\left<\frac{k_2}{dp^{m-1}}\right>\left<\frac{k_3}{dp^{m-1}}\right>\left<\frac{k_4}{dp^{m-1}}\right>}\\&\quad \ll d^4p^{\frac{7}{2}m-4}(\log p^m)^3. \end{aligned}$$

Similarly we get

$$\begin{aligned}&\mathop {\mathop { \mathop {\sum _{|k_1|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_1} \mathop {\sum _{\frac{p^{\frac{m}{2}}}{16}+1\le |k_2|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_2} \mathop {\sum _{|k_3|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_3} \mathop {\sum _{|k_4|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_4} }_{k_1+k_2+k_3+k_4\equiv 0 (\bmod dp^{m-1})} }_{k_2+2k_3+3k_4\equiv 0 (\bmod p^{\frac{m}{2}})}\cot \pi \frac{k_1}{dp^{m-1}}\\&\qquad \times \cot \pi \frac{k_2}{dp^{m-1}}\cot \pi \frac{k_3}{dp^{m-1}}\cot \pi \frac{k_4}{dp^{m-1}}\\&\quad \ll d^4p^{\frac{7}{2}m-4}(\log p^m)^3, \\&\mathop {\mathop { \mathop {\sum _{|k_1|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_1} \mathop {\sum _{|k_2|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_2} \mathop {\sum _{\frac{p^{\frac{m}{2}}}{16}+1\le |k_3|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_3} \mathop {\sum _{|k_4|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_4} }_{k_1+k_2+k_3+k_4\equiv 0 (\bmod dp^{m-1})} }_{k_2+2k_3+3k_4\equiv 0 (\bmod p^{\frac{m}{2}})} \cot \pi \frac{k_1}{dp^{m-1}}\\&\qquad \times \pi \frac{k_2}{dp^{m-1}}\cot \pi \frac{k_3}{dp^{m-1}}\cot \pi \frac{k_4}{dp^{m-1}}\\&\quad \ll d^4p^{\frac{7}{2}m-4}(\log p^m)^3, \\&\mathop {\mathop { \mathop {\sum _{|k_1|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_1} \mathop {\sum _{|k_2|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_2} \mathop {\sum _{|k_3|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_3} \mathop {\sum _{\frac{p^{\frac{m}{2}}}{16}+1\le |k_4|\le \frac{d}{2}p^{m-1}}}_{2\not \mid k_4} }_{k_1+k_2+k_3+k_4\equiv 0 (\bmod dp^{m-1})} }_{k_2+2k_3+3k_4\equiv 0 (\bmod p^{\frac{m}{2}})} \cot \pi \frac{k_1}{dp^{m-1}}\\&\qquad \times \cot \pi \frac{k_2}{dp^{m-1}}\cot \pi \frac{k_3}{dp^{m-1}}\cot \pi \frac{k_4}{dp^{m-1}}\\&\quad \ll d^4p^{\frac{7}{2}m-4}(\log p^m)^3. \end{aligned}$$

Therefore

$$\begin{aligned} \varOmega _{d,m}=&\frac{1}{16}\mathop {\mathop { \mathop {\sum _{|k_1|\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_1} \mathop {\sum _{|k_2|\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_2} \mathop {\sum _{|k_3|\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_3} \mathop {\sum _{|k_4|\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_4} }_{k_1+k_2+k_3+k_4\equiv 0 (\bmod dp^{m-1})} }_{k_2+2k_3+3k_4\equiv 0 (\bmod p^{\frac{m}{2}})} \cot \pi \frac{k_1}{dp^{m-1}}\cot \pi \frac{k_2}{dp^{m-1}}\nonumber \\&\qquad \times \cot \pi \frac{k_3}{dp^{m-1}}\cot \pi \frac{k_4}{dp^{m-1}} +O\left( d^4p^{\frac{7}{2}m-4}(\log p^m)^3\right) \\ =&\frac{1}{16}\mathop {\mathop { \mathop {\sum _{|k_1|\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_1} \mathop {\sum _{|k_2|\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_2} \mathop {\sum _{|k_3|\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_3} \mathop {\sum _{|k_4|\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_4} }_{k_1+k_2+k_3+k_4=0} }_{k_2+2k_3+3k_4=0} \cot \pi \frac{k_1}{dp^{m-1}}\cot \pi \frac{k_2}{dp^{m-1}}\nonumber \\&\qquad \times \cot \pi \frac{k_3}{dp^{m-1}}\cot \pi \frac{k_4}{dp^{m-1}} +O\left( d^4p^{\frac{7}{2}m-4}(\log p^m)^3\right) \\ =&-\frac{1}{16}\mathop {\sum _{|k_3|\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_3} \mathop {\sum _{|k_4|\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_4} \cot \pi \frac{k_3+2k_4}{dp^{m-1}}\cot \pi \frac{2k_3+3k_4}{dp^{m-1}}\nonumber \\&\qquad \times \cot \pi \frac{k_3}{dp^{m-1}}\cot \pi \frac{k_4}{dp^{m-1}} +O\left( d^4p^{\frac{7}{2}m-4}(\log p^m)^3\right) \\ =&-\frac{1}{8}\mathop {\sum _{1\le k_3\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_3}\mathop {\sum _{1\le k_4\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_4} \cot \pi \frac{k_3+2k_4}{dp^{m-1}}\cot \pi \frac{2k_3+3k_4}{dp^{m-1}}\\&\qquad \times \cot \pi \frac{k_3}{dp^{m-1}}\cot \pi \frac{k_4}{dp^{m-1}}\nonumber \\&+\frac{1}{8}\mathop {\sum _{1\le k_3\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_3} \mathop {\sum _{1\le k_4\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_4} \cot \pi \frac{k_3-2k_4}{dp^{m-1}}\cot \pi \frac{2k_3-3k_4}{dp^{m-1}}\\&\qquad \times \cot \pi \frac{k_3}{dp^{m-1}}\cot \pi \frac{k_4}{dp^{m-1}}+O\left( d^4p^{\frac{7}{2}m-4}(\log p^m)^3\right) . \end{aligned}$$

Note that

$$\begin{aligned}&\frac{1}{8}\mathop {\mathop {\sum _{1\le k_3\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_3} \mathop {\sum _{1\le k_4\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_4} }_{3k_4<2k_3<4k_4} \cot \pi \frac{k_3-2k_4}{dp^{m-1}}\cot \pi \frac{2k_3-3k_4}{dp^{m-1}} \cot \pi \frac{k_3}{dp^{m-1}}\cot \pi \frac{k_4}{dp^{m-1}}\\&=-\frac{1}{8}\mathop {\mathop {\sum _{1\le k_3\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_3} \mathop {\sum _{1\le k_4\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_4} }_{3k_4<2k_3<4k_4} \cot \pi \frac{2k_4-k_3}{dp^{m-1}}\cot \pi \frac{2k_3-3k_4}{dp^{m-1}}\\&\qquad \qquad \qquad \times \cot \pi \frac{k_3}{dp^{m-1}}\cot \pi \frac{k_4}{dp^{m-1}}\\&=-\frac{1}{8}\mathop {\mathop {\mathop {\sum _{1\le l_3\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid l_3} \mathop {\sum _{1\le l_4\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid l_4} }_{1\le 2l_3+3l_4\le \frac{p^{\frac{m}{2}}}{16}}}_{1\le l_3+2l_4\le \frac{p^{\frac{m}{2}}}{16}} \cot \pi \frac{l_4}{dp^{m-1}}\cot \pi \frac{l_3}{dp^{m-1}} \cot \pi \frac{2l_3+3l_4}{dp^{m-1}}\cot \pi \frac{l_3+2l_4}{dp^{m-1}}. \end{aligned}$$

Thus we have

$$\begin{aligned} \varOmega _{d,m}=&\frac{1}{8}\mathop {\mathop {\sum _{1\le k_3\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_3} \mathop {\sum _{1\le k_4\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_4}}_{k_3>2k_4\ \hbox {or}\ k_3<\frac{3}{2}k_4} \cot \pi \frac{k_3-2k_4}{dp^{m-1}}\cot \pi \frac{2k_3-3k_4}{dp^{m-1}}\\&\qquad \times \cot \pi \frac{k_3}{dp^{m-1}}\cot \pi \frac{k_4}{dp^{m-1}}\\&\qquad -\frac{1}{4}\mathop {\sum _{1\le k_3\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_3} \mathop {\sum _{1\le k_4\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_4} \cot \pi \frac{k_3+2k_4}{dp^{m-1}}\cot \pi \frac{2k_3+3k_4}{dp^{m-1}}\\&\qquad \times \cot \pi \frac{k_3}{dp^{m-1}}\cot \pi \frac{k_4}{dp^{m-1}}\\&\qquad +O\left( d^4p^{\frac{7}{2}m-4}(\log p^m)^3\right) \\ =&\frac{1}{8}\mathop {\mathop {\sum _{1\le k_3\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_3} \mathop {\sum _{1\le k_4\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_4}}_{k_3\ge 3k_4} \cot \pi \frac{k_4}{dp^{m-1}}\cot \pi \frac{k_3-2k_4}{dp^{m-1}}\\&\qquad \times \cot \pi \frac{k_3}{dp^{m-1}}\cot \pi \frac{2k_3-3k_4}{dp^{m-1}}\\&\qquad +\frac{1}{8}\mathop {\mathop {\sum _{1\le k_3\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_3}\mathop {\sum _{1\le k_4\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_4}}_{2k_4<k_3<3k_4} \cot \pi \frac{k_3-2k_4}{dp^{m-1}}\cot \pi \frac{k_4}{dp^{m-1}}\\&\qquad \times \cot \pi \frac{k_3}{dp^{m-1}}\cot \pi \frac{2k_3-3k_4}{dp^{m-1}}\\&\qquad +\frac{1}{8}\mathop {\mathop {\sum _{1\le k_3\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_3}\mathop {\sum _{1\le k_4\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_4}}_{k_3\le k_4} \cot \pi \frac{k_3}{dp^{m-1}}\cot \pi \frac{k_4}{dp^{m-1}}\\&\qquad \times \cot \pi \frac{2k_4-k_3}{dp^{m-1}}\cot \pi \frac{3k_4-2k_3}{dp^{m-1}}\\&\qquad +\frac{1}{8}\mathop {\mathop {\sum _{1\le k_3\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_3} \mathop {\sum _{1\le k_4\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_4}}_{k_4<k_3<\frac{3}{2}k_4} \cot \pi \frac{3k_4-2k_3}{dp^{m-1}}\cot \pi \frac{2k_4-k_3}{dp^{m-1}}\\&\qquad \times \cot \pi \frac{k_4}{dp^{m-1}}\cot \pi \frac{k_3}{dp^{m-1}}\\&\qquad -\frac{1}{4}\mathop {\mathop {\sum _{1\le k_3\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_3} \mathop {\sum _{1\le k_4\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_4}}_{k_3\le k_4} \cot \pi \frac{k_3}{dp^{m-1}}\cot \pi \frac{k_4}{dp^{m-1}}\\&\qquad \times \cot \pi \frac{k_3+2k_4}{dp^{m-1}}\cot \pi \frac{2k_3+3k_4}{dp^{m-1}}\\&\qquad -\frac{1}{4}\mathop {\mathop {\sum _{1\le k_3\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_3} \mathop {\sum _{1\le k_4\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_4}}_{k_4< k_3} \cot \pi \frac{k_4}{dp^{m-1}}\cot \pi \frac{k_3}{dp^{m-1}}\\&\qquad \times \cot \pi \frac{k_3+2k_4}{dp^{m-1}}\cot \pi \frac{2k_3+3k_4}{dp^{m-1}}\\&\qquad +O\left( d^4p^{\frac{7}{2}m-4}(\log p^m)^3\right) . \end{aligned}$$

Furthermore, we get

$$\begin{aligned}&\frac{1}{8}\mathop {\mathop {\sum _{1\le k_3\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_3}\mathop {\sum _{1\le k_4\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_4}}_{k_3\ge 3k_4} \cot \pi \frac{k_4}{dp^{m-1}}\cot \pi \frac{k_3-2k_4}{dp^{m-1}} \cot \pi \frac{k_3}{dp^{m-1}}\cot \pi \frac{2k_3-3k_4}{dp^{m-1}}\\&\quad =\frac{1}{8}\mathop {\mathop {\mathop {\sum _{1\le l_3\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid l_3} \mathop {\sum _{1\le l_4\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid l_4}}_{l_4\le l_3}}_{1\le l_3+2l_4\le \frac{p^{\frac{m}{2}}}{16}} \cot \pi \frac{l_4}{dp^{m-1}}\cot \pi \frac{l_3}{dp^{m-1}} \cot \pi \frac{l_3+2l_4}{dp^{m-1}}\cot \pi \frac{2l_3+l_4}{dp^{m-1}},\\&\frac{1}{8}\mathop {\mathop {\sum _{1\le k_3\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_3}\mathop {\sum _{1\le k_4\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_4}}_{2k_4<k_3<3k_4} \cot \pi \frac{k_3-2k_4}{dp^{m-1}}\cot \pi \frac{k_4}{dp^{m-1}} \cot \pi \frac{k_3}{dp^{m-1}}\cot \pi \frac{2k_3-3k_4}{dp^{m-1}}\\&\quad =\frac{1}{8}\mathop {\mathop {\mathop {\sum _{1\le l_3\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid l_3} \mathop {\sum _{1\le l_4\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid l_4}}_{l_4<l_3}}_{1\le 2l_3+l_4\le \frac{p^{\frac{m}{2}}}{16}} \cot \pi \frac{l_4}{dp^{m-1}}\cot \pi \frac{l_3}{dp^{m-1}} \cot \pi \frac{2l_3+l_4}{dp^{m-1}}\cot \pi \frac{l_3+2l_4}{dp^{m-1}},\\&\frac{1}{8}\mathop {\mathop {\sum _{1\le k_3\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_3}\mathop {\sum _{1\le k_4\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_4}}_{k_4<k_3<\frac{3}{2}k_4} \cot \pi \frac{3k_4-2k_3}{dp^{m-1}}\cot \pi \frac{2k_4-k_3}{dp^{m-1}} \cot \pi \frac{k_4}{dp^{m-1}}\cot \pi \frac{k_3}{dp^{m-1}}\\&\quad =\frac{1}{8}\mathop {\mathop {\mathop {\sum _{1\le l_3\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid l_3} \mathop {\sum _{1\le l_4\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid l_4}}_{l_3<l_4}}_{1\le 3l_4-2l_3\le \frac{p^{\frac{m}{2}}}{16}} \cot \pi \frac{l_3}{dp^{m-1}}\cot \pi \frac{l_4}{dp^{m-1}} \cot \pi \frac{2l_4-l_3}{dp^{m-1}}\cot \pi \frac{3l_4-2l_3}{dp^{m-1}}. \end{aligned}$$

Hence,

$$\begin{aligned} \varOmega _{d,m}&=\frac{1}{4}\mathop {\mathop {\sum _{1\le k_3\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_3} \mathop {\sum _{1\le k_4\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_4}}_{k_4< k_3} \cot \pi \frac{k_4}{dp^{m-1}}\cot \pi \frac{k_3}{dp^{m-1}}\cot \pi \frac{k_3+2k_4}{dp^{m-1}}\\&\quad \times \left( \cot \pi \frac{2k_3+k_4}{dp^{m-1}}-\cot \pi \frac{2k_3+3k_4}{dp^{m-1}}\right) \\&\quad +\frac{1}{4}\mathop {\mathop {\sum _{1\le k_3\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_3} \mathop {\sum _{1\le k_4\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k_4}}_{k_3< k_4} \cot \pi \frac{k_3}{dp^{m-1}}\cot \pi \frac{k_4}{dp^{m-1}}\\&\quad \times \left( \cot \pi \frac{2k_4-k_3}{dp^{m-1}}\cot \pi \frac{3k_4-2k_3}{dp^{m-1}}- \cot \pi \frac{k_3+2k_4}{dp^{m-1}}\cot \pi \frac{2k_3+3k_4}{dp^{m-1}}\right) \\&\quad +\frac{1}{8}\mathop {\sum _{1\le k\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k} \left( \cot \pi \frac{k}{dp^{m-1}}\right) ^2 \left( \cot \pi \frac{3k}{dp^{m-1}}\right) ^2\\&\quad +\frac{1}{8}\mathop {\sum _{1\le k\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k} \left( \cot \pi \frac{k}{dp^{m-1}}\right) ^4\\&\quad -\frac{1}{4}\mathop {\sum _{1\le k\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k}\left( \cot \pi \frac{k}{dp^{m-1}}\right) ^2 \cot \pi \frac{3k}{dp^{m-1}}\cot \pi \frac{5k}{dp^{m-1}}\\&\quad +O\left( d^4p^{\frac{7}{2}m-4}(\log p^m)^3\right) . \end{aligned}$$

Clearly,

$$\begin{aligned}&\cot \pi \frac{2k_3+k_4}{dp^{m-1}}-\cot \pi \frac{2k_3+3k_4}{dp^{m-1}}>0, \\&\cot \pi \frac{2k_4-k_3}{dp^{m-1}}\cot \pi \frac{3k_4-2k_3}{dp^{m-1}}- \cot \pi \frac{k_3+2k_4}{dp^{m-1}}\cot \pi \frac{2k_3+3k_4}{dp^{m-1}}>0, \end{aligned}$$

for \(1\le k_3, k_4\le \frac{p^{\frac{m}{2}}}{16}\), and we also get

$$\begin{aligned} \cot \pi \frac{k}{dp^{m-1}}>\cot \pi \frac{3k}{dp^{m-1}}>\cot \pi \frac{5k}{dp^{m-1}}, \quad \hbox {for} \quad 1\le k\le \frac{p^{\frac{m}{2}}}{16}. \end{aligned}$$

Therefore

$$\begin{aligned} \varOmega _{d,m}\ge&\frac{1}{4}\mathop {\sum _{1\le k\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k} \left( \cot \pi \frac{k}{dp^{m-1}}\right) ^2 \cot \pi \frac{3k}{dp^{m-1}}\left( \cot \pi \frac{3k}{dp^{m-1}}-\cot \pi \frac{5k}{dp^{m-1}}\right) \\&+O\left( d^4p^{\frac{7}{2}m-4}(\log p^m)^3\right) \\ =&\frac{1}{4}\mathop {\sum _{1\le k\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k}\left( \cot \pi \frac{k}{dp^{m-1}}\right) ^2 \cot \pi \frac{3k}{dp^{m-1}}\cdot \frac{\sin \pi \frac{2k}{dp^{m-1}}}{\sin \pi \frac{3k}{dp^{m-1}}\sin \pi \frac{5k}{dp^{m-1}}}\\&+O\left( d^4p^{\frac{7}{2}m-4}(\log p^m)^3\right) \\ \ge&\frac{1}{4}\mathop {\sum _{1\le k\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k} \frac{\frac{2k}{dp^{m-1}}}{\left( \pi \frac{k}{dp^{m-1}}\right) ^2\left( \pi \frac{3k}{dp^{m-1}}\right) ^2\pi \frac{5k}{dp^{m-1}}} +O\left( d^4p^{\frac{7}{2}m-4}(\log p^m)^3\right) \\ =&\frac{d^4p^{4m-4}}{90\pi ^5}\mathop {\sum _{1\le k\le \frac{p^{\frac{m}{2}}}{16}}}_{2\not \mid k}\frac{1}{k^4} +O\left( d^4p^{\frac{7}{2}m-4}(\log p^m)^3\right) \\ \ge&\frac{d^4}{90\pi ^5}p^{4m-4}+O\left( d^4p^{\frac{7}{2}m-4}(\log p^m)^3\right) . \end{aligned}$$

This completes the proof of Lemma 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Liu, X. On the properties of generalized cyclotomic binary sequences of period \(2p^m\). Des. Codes Cryptogr. 89, 1691–1712 (2021). https://doi.org/10.1007/s10623-021-00887-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-021-00887-3

Keywords

Mathematics Subject Classification

Navigation