Skip to main content
Log in

Large sets with multiplicity

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Large sets of combinatorial designs has always been a fascinating topic in design theory. These designs form a partition of the whole space into combinatorial designs with the same parameters. In particular, a large set of block designs, whose blocks are of size k taken from an n-set, is a partition of all the k-subsets of the n-set into disjoint copies of block designs, defined on the n-set, and with the same parameters. The current most intriguing question in this direction is whether large sets of Steiner quadruple systems exist and to provide explicit constructions for those parameters for which they exist. In view of its difficulty no one ever presented an explicit construction even for one nontrivial order. Hence, we seek for related generalizations. As generalizations, to the existence question of large sets, we consider two related questions. The first one is to provide constructions for sets on Steiner systems in which each block (quadruple or a k-subset) is contained in exactly \(\mu \) systems. The constructions of such systems also yield secure protocols for the generalized Russian cards problem. The second question is to provide constructions for large set of H-designs (mainly for quadruples, but also for larger block size), which have applications in threshold schemes and in quantum jump codes. We prove the existence of such systems for many parameters using orthogonal arrays, perpendicular arrays, ordered designs, sets of permutations, and one-factorizations of the complete graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baranyai Z.: On the factorization of the complete uniform hypergraph. In: Hajnal A., Rado T., Sbs T. (eds.) Infinite and Finite sets, pp. 91–108. North-Holland, Amsterdam (1975).

    Google Scholar 

  2. Bierbrauer J.: Monotypical uniformly homogeneous sets of permutations. Arch. math. 58, 338–344 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  3. Bierbrauer J.: The uniformly 3-homogeneous subsets of PGL\((2, q)\). J. Algebra Combin. 4, 99–102 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  4. Bierbrauer J.: Ordered designs, perpendicular arrays, and permutation sets. In: Colbourn C.J., Dinitz J.H. (eds.) The CRC Handbook of Combinatorial Designs, pp. 543–547. John Wiley, New York (2006).

    Google Scholar 

  5. Bierbrauer J., Black S., Edel Y.: Some \(t\)-homogeneous sets of permutations. Des. Codes Cryptogr. 9, 29–38 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  6. Bierbrauer J., Edel Y.: Theory of perpendicular arrays. J. Comb. Des. 2, 375–406 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  7. Bierbrauer J., Edel Y.: Halving PSL\((2, q)\). J. Geom. 64, 51–54 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  8. Bierbrauer J., van Trung T.: Halving PGL\((2,2^f)\), \(f\) odd: a series of cryptocodes. Des. Codes Cryptogr. 1, 141–148 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  9. Bierbrauer J., van Trung T.: Some highly symmetric authentication perpendicular arrays. Des. Codes Cryptogr. 1, 307–319 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  10. Blackburn S. R., Etzion T.: Block-avoiding point sequencings. J. Comb. Des. 29, 339–366 (2021).

  11. Cameron P.J.: Permutation groups. Handb. Comb. 1, 611–645 (1995).

    MATH  Google Scholar 

  12. Chee Y. M., Etzion T., Kiah H. M., Vardy A., Wang C.: Explicit Baranyai partitions for quadruples, part I: quadrupling constructions. J. Comb. Des. https://doi.org/10.1002/jcd.21776. (to appear)

  13. Chen D., Lindner C.C., Stinson D.R.: Further results on large sets of disjoint group-divisible designs. Discret. Math. 110, 35–42 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  14. Etzion T.: On threshold schemes from large sets. J. Comb. Des. 4, 323–338 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  15. Etzion T., Hartman A.: Towards a large set of Steiner quadruple systems. SIAM J. Discret. Math. 4, 182–195 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  16. Etzion T., Zhou J.: An improved recursive construction for disjoint Steiner quadruple systems. J. Comb. Des. 28, 551–567 (2020).

    Article  MathSciNet  Google Scholar 

  17. Finucane H., Peled R., Yaari Y.: A recursive construction of \(t\)-wise uniform permutations. Random Struct. Algorithms 46, 531–540 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  18. Ge G., Zhu L.: Authentication perpendicular arrays APA\(_1(2, 5, v)\). Des. Codes Cryptogr. 4, 365–375 (1996).

    MathSciNet  MATH  Google Scholar 

  19. Granville A., Moisiadis A., Rees R.S.: Nested Steiner \(n\)-cycle systems and perpendicular arrays. J. Combin. Math. Combin. Comput. 3, 163–167 (1988).

    MathSciNet  MATH  Google Scholar 

  20. Hartman A.: The fundamental construction for 3-designs. Discret. Math. 124, 107–132 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  21. Hartman A., Mills W.H., Mullin R.C.: Covering triples by quadruples: an asymptotic solution. J. Combin. Theory A 41, 117–138 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  22. Hedayat A.S., Sloane N.J.A., Stufken J.: Orthogonal Arrays: Theory and Applications. Springer, New York (1999).

    Book  MATH  Google Scholar 

  23. Ji L.: A new existence proof for large sets of disjoint Steiner triple systems. J. Comb. Theory A 112, 308–327 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  24. Ji L.: An improvement on H design. J. Comb. Des. 17, 25–35 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  25. Ji L.: A complete solution to existence of H designs. J. Comb. Des. 27, 75–81 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  26. Keevash P.: The existence of designs II. arXiv:1802.05900 (2018).

  27. Kotzig A., Lindner K., Rosa A.: Latin squares with no subsquares of order two and disjoint Steiner triple systems. Utilias Math. 7, 287–294 (1975).

    MathSciNet  MATH  Google Scholar 

  28. Kramer E.S., Wu Q.-R., Magliveras S.S., van Trung T.: Some perpendicular arrays for arbitrarily large \(t\). Discret. Math. 96, 101–110 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  29. Kuperberg G., Lovett S., Peled R.: Probabilistic existence of regular combinatorial structures. Geom. Funct. Anal. 27, 919–972 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  30. Lei J.: Completing the spectrum for LGDD\((m^v)\). J. Comb. Des. 5, 1–11 (1997).

    Article  Google Scholar 

  31. Lindner C.C.: A note on disjoint Steiner quadruple systems. Ars Comb. 3, 271–276 (1977).

    MathSciNet  MATH  Google Scholar 

  32. Lindner C.C.: On the construction of pairwise disjoint Steiner quadruple systems. Ars Comb. 19, 153–156 (1985).

    MathSciNet  MATH  Google Scholar 

  33. Lu J. X.: On large sets of disjoint Steiner triple systems, I–III. J. Comb. Theory A 34, 140–146, 147–155, 156–182 (1983)

  34. Lu J. X.: On large sets of disjoint Steiner triple systems, IV – VI. J. Comb. Theory A 37, 136–163, 164–188, 189–192 (1984)

  35. Martin W.J., Sagan B.E.: A new notion of transitivity for groups and sets of permutations. J. Lond. Math. Soc. 73, 1–13 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  36. Mills W. H.: On the covering of triples by quadruple. In: Proc. of the Fifth Southeastern Conference on Combinatorics Graph Theory and Algorithms, pp. 573–581 (1974)

  37. Mills W.H.: On the existence of H designs. Congr. Numer. 79, 129–141 (1990).

    MathSciNet  MATH  Google Scholar 

  38. Mullin R.C., Schellenberg P.J., van Rees G.H.J., Vanstone S.A.: On the construction of perpendicular arrays. Utilitas Math. 18, 141–160 (1980).

    MathSciNet  MATH  Google Scholar 

  39. Peltesohn R., dreien Das Turnieroblem für spiele zu je: Inaugural dissertation, Berlin (1936)

  40. Raghavarao D.: Constructions and Combinatorial Problems in the Design of Experiments. Wiley, New York (1971).

    MATH  Google Scholar 

  41. Rao C.R.: Combinatorial arrangements analogous to orthogonal arrays. Sankhyā A23, 283–286 (1961).

    MATH  Google Scholar 

  42. Schellenberg P.J., Stinson D.R.: Threshold schemes from combinatorial designs. J. Comb. Math. Comb. Comput. 5, 143–160 (1989).

    MathSciNet  MATH  Google Scholar 

  43. Stinson D.R.: The combinatorics of authentication and secrecy codes. J. Cryptol. 2, 23–49 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  44. Stinson D.R., Vanstone S.A.: A combinatorial approach to threshold schemes. SIAM J. Discret. Math. 1, 230–236 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  45. Swanson C.M., Stinson D.R.: Combinatorial solutions providing improved security for the generalized Russian cards problem. Des. Codes Cryptogr. 72, 345–367 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  46. Teirlinck L.: Non-trivial \(t\)-designs without repeated blocks exist for all \(t\). Discret. Math. 65, 301–311 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  47. Teirlinck L.: On large sets of disjoint ordered designs. Ars Comb. 25, 31–37 (1988).

    MathSciNet  MATH  Google Scholar 

  48. Teirlinck L.: Locally trivial designs and \(t\)-designs without repeated blocks. Discret. Math. 77, 345–356 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  49. Teirlinck L.: A completion of Lu’s determination of the spectrum for large sets of disjoint Steiner triple systems. J. Comb. Theory A 57, 302–305 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  50. Teirlinck L.: Large sets with holes. J. Comb. Des. 1, 69–94 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  51. Wallis W.D.: One-factorizations. Kluwer Academic Publisher, New York (1997).

    Book  MATH  Google Scholar 

  52. Zhou J., Chang Y.: Bounds and constructions of \(t\)-spontaneous emission error designs. Des. Codes Cryptogr. 85, 249–271 (2017).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are indebted to Doug Stinson who brought to our attention his paper [45] on the Russian cards problem. This problem has given further motivation for our constructions of large sets with multiplicity. We are also indebted to a reviewer which read our draft very carefully and gave many constructive comments which amended this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuvi Etzion.

Additional information

Communicated by L. Teirlinck.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported in part by the 111 Project of China (B16002) and in part by the NSFC grants 11571034 and 11971053. Part of the research was performed during a visit of T. Etzion to Beijing Jiaotong University. He expresses sincere thanks to the 111 Project of China (B16002) for its support and to the Department of Mathematics at Beijing Jiaotong University for their kind hospitality. T. Etzion was also supported in part by the Bernard Elkin Chair in Computer Science.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etzion, T., Zhou, J. Large sets with multiplicity. Des. Codes Cryptogr. 89, 1661–1690 (2021). https://doi.org/10.1007/s10623-021-00878-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-021-00878-4

Keywords

Mathematics Subject Classification

Navigation