Skip to main content
Log in

Subgroup perfect codes in Cayley sum graphs

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let \(\Gamma \) be a graph with vertex set V. If a subset C of V is independent in \(\Gamma \) and every vertex in \(V\setminus C\) is adjacent to exactly one vertex in C, then C is called a perfect code of \(\Gamma \). Let G be a finite group and let S be a square-free normal subset of G. The Cayley sum graph of G with respect to S is a simple graph with vertex set G and two vertices x and y are adjacent if \(xy\in S\). A subset C of G is called a perfect code of G if there exists a Cayley sum graph of G which admits C as a perfect code. In particular, if a subgroup of G is a perfect code of G, then the subgroup is called a subgroup perfect code of G. In this paper, we give a necessary and sufficient condition for a non-trivial subgroup of an abelian group with non-trivial Sylow 2-subgroup to be a subgroup perfect code of the group. This reduces the problem of determining when a given subgroup of an abelian group is a perfect code to the case of abelian 2-groups. As an application, we classify the abelian groups whose every non-trivial subgroup is a subgroup perfect code. Moreover, we determine all subgroup perfect codes of a cyclic group, a dihedral group and a generalized quaternion group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon N.: Large sets in finite fields are sumsets. J. Number Theory 126, 110–118 (2007).

    Article  MathSciNet  Google Scholar 

  2. Amooshahi M., Taeri B.: On Cayley sum graphs of non-abelian groups. Graphs Combin. 32, 17–29 (2016).

    Article  MathSciNet  Google Scholar 

  3. Biggs N.L.: Perfect codes in graphs. J. Combin. Theory Ser. B 15, 289–296 (1973).

    Article  MathSciNet  Google Scholar 

  4. Cheyne B., Gupta V., Wheeler C.: Hamilton cycles in addition graphs. Rose-Hulman Undergrad. Math J. 4, 1–17 (2003). (electronic).

    Google Scholar 

  5. Chung F.R.K.: Diameters and eigenvalues. J. Am. Math. Soc. 2, 187–196 (1989).

    Article  MathSciNet  Google Scholar 

  6. Dejter I.J., Serra O.: Efficient dominating sets in Cayley graphs. Discrete Appl. Math. 129, 319–328 (2003).

    Article  MathSciNet  Google Scholar 

  7. Delsarte P.: An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl. 10, 165, 171, 173 (1973).

  8. Deng Y.-P., Sun Y.-Q., Liu Q., Wang H.-C.: Efficient dominating sets in circulant graphs. Discret. Math. 340, 1503–1507 (2017).

    Article  MathSciNet  Google Scholar 

  9. DeVos M., Goddyn L., Mohar B., S̆ámal R.: Cayley sum graphs and eigenvalues of \((3,6)\)-fullerenes. J. Combin. Theory Ser. B 99, 358–369 (2009).

    Article  MathSciNet  Google Scholar 

  10. Feng R., Huang H., Zhou S.: Perfect codes in circulant graphs. Discret. Math. 340, 1522–1527 (2017).

    Article  MathSciNet  Google Scholar 

  11. Grynkiewicz D., Levb V.F., Serra O.: Connectivity of addition Cayley graphs. J. Combin. Theory Ser. B 99, 202–217 (2009).

    Article  MathSciNet  Google Scholar 

  12. Heden O.: A survey of perfect codes. Adv. Math. Commun. 2, 223–247 (2008).

    Article  MathSciNet  Google Scholar 

  13. Huang H., Xia B., Zhou S.: Perfect codes in Cayley graphs. SIAM J. Discret. Math. 32, 548–559 (2018).

    Article  MathSciNet  Google Scholar 

  14. James G., Liebeck M.: Representations and Characters of Groups. Cambridge University Press, Cambridge (2001).

    Book  Google Scholar 

  15. Johnson D.L.: Topics in the Theory of Group Presentations. London Mathematical Society Lecture Note Series, vol. 42. Cambridge University Press, Cambridge (1980).

  16. Konyagin S.V., Shkredov I.D.: On subgraphs of random Cayley sum graphs. Eur. J. Comb. 70, 61–74 (2018).

    Article  MathSciNet  Google Scholar 

  17. Kratochvíl J.: Perfect codes over graphs. J. Comb. Theory Ser. B 40, 224–228 (1986).

    Article  MathSciNet  Google Scholar 

  18. Lee J.: Independent perfect domination sets in Cayley graphs. J. Graph Theory 37, 213–219 (2001).

    Article  MathSciNet  Google Scholar 

  19. Lev V.F.: Sums and differences along Hamiltonian cycles. Discret. Math. 310, 575–584 (2010).

    Article  MathSciNet  Google Scholar 

  20. Li C.-K., Nelson I.: Perfect codes on the towers of Hanoi graph. Bull. Aust. Math. Soc. 57, 367–376 (1998).

    Article  MathSciNet  Google Scholar 

  21. Ma X., Wang K.: Integral Cayley sum graphs and groups. Discuss. Math. Graph Theory 36, 797–803 (2016).

    Article  MathSciNet  Google Scholar 

  22. Mollard M.: On perfect codes in Cartesian products of graphs. Eur. J. Comb. 32, 398–403 (2011).

    Article  MathSciNet  Google Scholar 

  23. van Lint J.H.: A survey of perfect codes. Rocky Mt. J. Math. 5, 199–224 (1975).

    Article  MathSciNet  Google Scholar 

  24. Žerovnik J.: Perfect codes in direct products of cycles—a complete characterization. Adv. Appl. Math. 41, 197–205 (2008).

    Article  MathSciNet  Google Scholar 

  25. Zhou S.: Total perfect codes in Cayley graphs. Des. Codes Cryptogr. 81, 489–504 (2016).

    Article  MathSciNet  Google Scholar 

  26. Zhou S.: Cyclotomic graphs and perfect codes. J. Pure Appl. Algebra 223, 931–947 (2019).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referees for their helpful comments which led to improvement of Section 3 and betterment of presentation of the paper. Ma was supported by the National Natural Science Foundation of China (Grant Nos. 11801441 and 61976244), the Natural Science Basic Research Program of Shaanxi (Program No. 2020JQ-761), and the Young Talent fund of University Association for Science and Technology in Shaanxi, China (Grant No. 20190507). Feng was supported by the National Natural Science Foundation of China (11701281), the Natural Science Foundation of Jiangsu Province (BK20170817) and the Grant of China Postdoctoral Science Foundation. Wang was supported by the National Natural Science Foundation of China (11671043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuanlong Ma.

Additional information

Communicated by V. A. Zinoviev.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Feng, M. & Wang, K. Subgroup perfect codes in Cayley sum graphs. Des. Codes Cryptogr. 88, 1447–1461 (2020). https://doi.org/10.1007/s10623-020-00758-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-020-00758-3

Keywords

Mathematics Subject Classification

Navigation