Skip to main content
Log in

Steane-enlargement of quantum codes from the Hermitian function field

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper, we study the construction of quantum codes by applying Steane-enlargement to codes from the Hermitian function field. We cover Steane-enlargement of both usual one-point Hermitian codes and of order bound improved Hermitian codes. In particular, the paper contains two constructions of quantum codes whose parameters are described by explicit formulae, and we show that these codes compare favourably to existing, comparable constructions in the literature. Furthermore, a number of the new codes meet or even exceed the quantum Gilbert–Varshamov bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Andersen H.E., Geil O.: Evaluation codes from order domain theory. Finite Fields Appl. 14(1), 92–123 (2008). https://doi.org/10.1016/j.ffa.2006.12.004.

    Article  MathSciNet  MATH  Google Scholar 

  2. Calderbank A.R., Shor P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996). https://doi.org/10.1103/PhysRevA.54.1098.

    Article  Google Scholar 

  3. Christensen, R.B., Geil, O.: On nested code pairs from the Hermitian curve. CoRR (2018). arXiv:1807.04042

  4. Christensen, R.B., Geil, O.: On Steane-enlargement of quantum codes from Cartesian product point sets. CoRR (2019). arXiv:1908.04560

  5. Duursma I.M., Park S.: Coset bounds for algebraic geometric codes. Finite Fields Appl. 16(1), 36–55 (2010). https://doi.org/10.1016/j.ffa.2009.11.006.

    Article  MathSciNet  MATH  Google Scholar 

  6. Feng K., Ma Z.: A finite Gilbert–Varshamov bound for pure stabilizer quantum codes. IEEE Trans. Inf. Theory 50(12), 3323–3325 (2004). https://doi.org/10.1109/TIT.2004.838088.

    Article  MathSciNet  MATH  Google Scholar 

  7. Galindo C., Geil O., Hernando F., Ruano D.: Improved constructions of nested code pairs. IEEE Trans. Inf. Theory 64(4), 2444–2459 (2018). https://doi.org/10.1109/TIT.2017.2755682.

    Article  MathSciNet  MATH  Google Scholar 

  8. Galindo C., Hernando F., Ruano D.: Stabilizer quantum codes from J-affine variety codes and a new steane-like enlargement. Quantum Inf. Process. 14(9), 3211–3231 (2015). https://doi.org/10.1007/s11128-015-1057-2.

    Article  MathSciNet  MATH  Google Scholar 

  9. Geil O.: On codes from norm-trace curves. Finite Fields Appl. 9(3), 351–371 (2003). https://doi.org/10.1016/S1071-5797(03)00010-8.

    Article  MathSciNet  MATH  Google Scholar 

  10. Geil O., Munuera C., Ruano D., Torres F.: On the order bounds for one-point AG codes. Adv. Math. Commun. 5(3), 489–504 (2011). https://doi.org/10.3934/amc.2011.5.489.

    Article  MathSciNet  MATH  Google Scholar 

  11. Hamada M.: Concatenated quantum codes constructible in polynomial time: efficient decoding and error correction. IEEE Trans. Inf. Theory 54(12), 5689–5704 (2008). https://doi.org/10.1109/TIT.2008.2006416.

    Article  MathSciNet  MATH  Google Scholar 

  12. Høholdt T., van Lint J.H., Pellikaan R.: Algebraic geometry codes. In: Pless V.S., Huffman W.C. (eds.) Handbook of Coding Theory, vol. 1, pp. 871–961. Elsevier, Amsterdam (1998).

    Google Scholar 

  13. Jin, L., Xing, C.: Quantum Gilbert–Varshamov bound through symplectic self-orthogonal codes. In: 2011 IEEE International Symposium on Information Theory Proceedings, pp. 455–458 (2011). https://doi.org/10.1109/ISIT.2011.6034167

  14. Knill E., Laflamme R.: Theory of quantum error-correcting codes. Phys. Rev. A 55, 900–911 (1997). https://doi.org/10.1103/PhysRevA.55.900.

    Article  MathSciNet  Google Scholar 

  15. La Guardia G.G.: Asymmetric quantum reed-solomon and generalized reed-solomon codes. Quantum Inf. Process. 11(2), 591–604 (2012). https://doi.org/10.1007/s11128-011-0269-3.

    Article  MathSciNet  MATH  Google Scholar 

  16. La Guardia G.G., Pereira F.R.F.: Good and asymptotically good quantum codes derived from algebraic geometry. Quantum Inf. Process. 16(6), 165 (2017). https://doi.org/10.1007/s11128-017-1618-7.

    Article  MathSciNet  MATH  Google Scholar 

  17. Ling S., Luo J., Xing C.: Generalization of Steane’s enlargement construction of quantum codes and applications. IEEE Trans. Inf. Theory 56(8), 4080–4084 (2010). https://doi.org/10.1109/TIT.2010.2050828.

    Article  MathSciNet  MATH  Google Scholar 

  18. Munuera C., Tenório W., Torres F.: Quantum error-correcting codes from algebraic geometry codes of Castle type. Quantum Inf. Process. 15(10), 4071–4088 (2016). https://doi.org/10.1007/s11128-016-1378-9.

    Article  MathSciNet  MATH  Google Scholar 

  19. Rains E.M.: Nonbinary quantum codes. IEEE Trans. Inf. Theory 45(6), 1827–1832 (1999). https://doi.org/10.1109/18.782103.

    Article  MathSciNet  MATH  Google Scholar 

  20. Sarvepalli P.K., Klappenecker A.: Nonbinary quantum codes from Hermitian curves. In: Fossorier M.P.C., Imai H., Lin S., Poli A. (eds.) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, pp. 136–143. Springer, Berlin, Heidelberg (2006). 10.1007/11617983\_13.

    Chapter  Google Scholar 

  21. Sarvepalli P.K., Klappenecker A., Rötteler M.: Asymmetric quantum codes: constructions, bounds and performance. Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 465, 1645–1672 (2009). https://doi.org/10.1098/rspa.2008.0439.

    Article  MathSciNet  MATH  Google Scholar 

  22. Steane A.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 452(1954), 2551–2577 (1996).

    Article  MathSciNet  Google Scholar 

  23. Steane A.M.: Enlargement of Calderbank–Shor–Steane quantum codes. IEEE Trans. Inf. Theory 45(7), 2492–2495 (1999). https://doi.org/10.1109/18.796388.

    Article  MathSciNet  MATH  Google Scholar 

  24. Stichtenoth H.: Algebraic Function Fields and Codes: Graduate Texts in Mathematics, 2nd edn. Springer, New York (2009).

    MATH  Google Scholar 

  25. Tiersma H.: Remarks on codes from Hermitian curves. IEEE Trans. Inf. Theory 33(4), 605–609 (1987). https://doi.org/10.1109/TIT.1987.1057327.

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang K., Kumar P.V.: On the true minimum distance of Hermitian codes. In: Stichtenoth H., Tsfasman M.A. (eds.) Coding Theory and Algebraic Geometry, pp. 99–107. Springer, New York (1992).

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous reviewers for their thorough reading of the manuscript and their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Bødker Christensen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Codes, Cryptology and Curves”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christensen, R.B., Geil, O. Steane-enlargement of quantum codes from the Hermitian function field. Des. Codes Cryptogr. 88, 1639–1652 (2020). https://doi.org/10.1007/s10623-019-00709-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-019-00709-7

Keywords

Mathematics Subject Classification

Navigation