Skip to main content
Log in

Further Results on the Morgan–Mullen Conjecture

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let \(\mathbb {F}_q\) be the finite field of characteristic p with q elements and \(\mathbb {F}_{q^n}\) its extension of degree n. The conjecture of Morgan and Mullen asserts the existence of primitive and completely normal elements (PCN elements) for the extension \(\mathbb {F}_{q^n}/\mathbb {F}_q\) for any q and n. It is known that the conjecture holds for \(n \le q\). In this work we prove the conjecture for a larger range of exponents. In particular, we give sharper bounds for the number of completely normal elements and use them to prove asymptotic and effective existence results for \(q\le n\le O(q^\epsilon )\), where \(\epsilon =2\) for the asymptotic results and \(\epsilon =1.25\) for the effective ones. For n even we need to assume that \(q-1\not \mid n\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blessenohl D., Johnsen K.: Eine verschärfung des satzes von der normalbasis. J. Algebra 103(1), 141–159 (1986).

    Article  MathSciNet  Google Scholar 

  2. Cohen S.D., Hachenberger D.: Primitive normal bases with prescribed trace. Appl. Algebra Eng. Commun. Comput. 9(5), 383–403 (1999).

    Article  MathSciNet  Google Scholar 

  3. Cohen S.D., Huczynska S.: The primitive normal basis theorem—without a computer. J. London Math. Soc. 67(1), 41–56 (2003).

    Article  MathSciNet  Google Scholar 

  4. Cohen S.D., Huczynska S.: The strong primitive normal basis theorem. Acta Arith. 143(4), 299–332 (2010).

    Article  MathSciNet  Google Scholar 

  5. Diffie W., Hellman M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976).

    Article  MathSciNet  Google Scholar 

  6. Gao, S.: Normal Basis over Finite Fields. PhD thesis, University of Waterloo (1993)

  7. Garefalakis T., Kapetanakis G.: On the existence of primitive completely normal bases of finite fields. J. Pure Appl. Algebra 223(3), 909–921 (2019).

    Article  MathSciNet  Google Scholar 

  8. Hachenberger D.: Finite Fields: Normal Bases and Completely Free Elements, Kluwer International Series in Engineering and Computer Science, vol. 390. Kluwer Academic Publishers, Boston, MA (1997).

    Book  Google Scholar 

  9. Hachenberger D.: Primitive complete normal bases: existence in certain 2-power extensions and lower bounds. Discret. Math. 310(22), 3246–3250 (2010).

    Article  MathSciNet  Google Scholar 

  10. Hachenberger D.: Completely normal bases. In: Mullen G.L., Panario D. (eds.) Handbook of Finite Fields, pp. 128–138. CRC Press, Boca Raton (2013).

    MATH  Google Scholar 

  11. Hachenberger D.: Asymptotic existence results for primitive completely normal elements in extensions of Galois fields. Des. Codes Cryptogr. 80(3), 577–586 (2016).

    Article  MathSciNet  Google Scholar 

  12. Hsu C., Nan T.: A generalization of the primitive normal basis theorem. J. Number Theory 131(1), 146–157 (2011).

    Article  MathSciNet  Google Scholar 

  13. Kapetanakis G.: An extension of the (strong) primitive normal basis theorem. Appl. Algebra Eng. Commun. Comput. 25(5), 311–337 (2014).

    Article  MathSciNet  Google Scholar 

  14. Kapetanakis G.: Normal bases and primitive elements over finite fields. Finite Fields Appl. 26, 123–143 (2014).

    Article  MathSciNet  Google Scholar 

  15. Lenstra Jr. H.W., Schoof R.J.: Primitive normal bases for finite fields. Math. Comput. 48(177), 217–231 (1987).

    Article  MathSciNet  Google Scholar 

  16. Lidl R., Niederreiter H.: Finite Fields, 2nd edn. Cambridge University Press, Cambridge (1997).

    MATH  Google Scholar 

  17. Morgan I.H., Mullen G.L.: Completely normal primitive basis generators of finite fields. Util. Math. 49, 21–43 (1996).

    MathSciNet  MATH  Google Scholar 

  18. Robin G.: Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann. J. Math. Pures Appl. 63(2), 187–213 (1984).

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous reviewers for their valuable comments. Theodoulos Garefalakis was supported by the University of Crete Research Grant No. 10316.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgos Kapetanakis.

Additional information

Communicated by G. Mullen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garefalakis, T., Kapetanakis, G. Further Results on the Morgan–Mullen Conjecture. Des. Codes Cryptogr. 87, 2639–2654 (2019). https://doi.org/10.1007/s10623-019-00643-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-019-00643-8

Keywords

Mathematics Subject Classification

Navigation