Skip to main content
Log in

Hamming correlation properties of the array structure of Sidelnikov sequences

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper, we investigate the Hamming correlation properties of column sequences from the \((q-1)\times \frac{q^d-1}{q-1}\) array structure of M-ary Sidelnikov sequences of period \(q^d-1\) for \(M|q-1\) and \(d\ge 2\). We prove that the proposed set \(\varGamma (d)\) of some column sequences has the maximum non-trivial Hamming correlation upper bounded by the minimum of \(\frac{q-1}{M}d-1\) and \(\frac{M-1}{M}\left[ (2d-1)\sqrt{q}+1\right] +\frac{q-1}{M}\). When \(M=q-1\), we show that \(\varGamma (d)\) is optimal with respect to the Singleton bound. The set \(\varGamma (d)\) can be extended to a much larger set \(\varDelta (d)\) by involving all the constant additions of the members of \(\varGamma (d)\), which is also optimal with respect to the Singleton bound when \(M=q-1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao Z., Ge G., Miao Y.: Combinatorial characterizations of one-coincidence frequency-hopping sequences. Des. Codes Cryptgr. 41(2), 177–184 (2006).

    Article  MathSciNet  Google Scholar 

  2. Chu W., Colbourn C.J.: Optimal frequency-hopping sequences via cyclotomy. IEEE Trans. Inf. Theory 51(3), 1139–1141 (2005).

    Article  MathSciNet  Google Scholar 

  3. Chung J.-H., Han Y.K., Yang K.: New classes of optimal frequency-hopping sequences by interleaving techniques. IEEE Trans. Inf. Theory 55(12), 5783–5791 (2009).

    Article  MathSciNet  Google Scholar 

  4. Ding C., Yin J.: Sets of optimal frequency-hopping sequences. IEEE Trans. Inf. Theory 54(8), 3741–3745 (2008).

    Article  MathSciNet  Google Scholar 

  5. Ding C., Miosio M.J., Yuan J.: Algebraic constructions of optimal frequency-hopping sequences. IEEE Trans. Inf. Theory 53(7), 2606–2610 (2007).

    Article  MathSciNet  Google Scholar 

  6. Ding C., Fuji-Hara R., Fujiwara Y., Jimbo M., Mishima M.: Sets of frequency hopping sequences: bounds and optimal constructions. IEEE Trans. Inf. Theory 55(7), 3297–3304 (2009).

    Article  MathSciNet  Google Scholar 

  7. Fuji-Hara R., Miao Y., Mishima M.: Optimal frequency hopping sequences: a combinatorial approach. IEEE Trans. Inf. Theory 50(10), 2408–2420 (2004).

    Article  MathSciNet  Google Scholar 

  8. Ge G., Fuji-Hara R., Miao Y.: Further combinatorial constructions for optimal frequency hopping sequences. J. Comb. Theory 113, 1699–1718 (2006).

    Article  MathSciNet  Google Scholar 

  9. Ge G., Miao Y., Yao Z.: Optimal frequency hopping sequences: auto- and cross-correlation properties. IEEE Trans. Inf. Theory 55(2), 867–879 (2009).

    Article  MathSciNet  Google Scholar 

  10. Han, Y. K., Yang, K.: New near-optimal frequency-hopping sequences of length \(pq\). Proceedings on 2008 IEEE International Symposium on Information Theory, 2593–2597 (2008).

  11. Han Y.K., Yang K.: New M-ary sequence families with low correlation and large size. IEEE Trans. Inf. Theory 55(4), 1815–1823 (2009).

    Article  MathSciNet  Google Scholar 

  12. Han Y.K., Yang K.: On the Sidelnikov sequences as frequency-hopping sequences. IEEE Trans. Inf. Theory 55(9), 4279–4285 (2009).

    Article  Google Scholar 

  13. Holmes J.K.: Spread Spectrum Systems for GNSS and Wireless Communications. Artech House, Boston (2007).

    Google Scholar 

  14. Kim Y.-J., Song H.-Y.: Cross correlation of Sidelnikov sequences and their constant multiples. IEEE Trans. Inf. Theory 53(3), 1220–1224 (2007).

    Article  MathSciNet  Google Scholar 

  15. Kim Y.-S., Chung J.-S., No J.-S., Chung H.: New families of M-ary sequences with low correlation constructed from Sidelnikov sequences. IEEE Trans. Inf. Theory 54(8), 3768–3774 (2008).

    Article  MathSciNet  Google Scholar 

  16. Kim Y.-T., Kim D.S., Song H.-Y.: New \(M\)-ary Sequence families with low correlation from the array structure of Sidelnikov sequences. IEEE Tans. Inf. Theory 61(1), 655–670 (2015).

    Article  MathSciNet  Google Scholar 

  17. Kumar P.V.: Frequency-hopping code sequence designs having large linear span. IEEE Trans. Inf. Theory 34(1), 146–151 (1988).

    Article  MathSciNet  Google Scholar 

  18. Lempel A., Greenberger H.: Families of sequences with optimal Hamming correlation properties. IEEE Trans. Inf. Theory 20(1), 90–94 (1974).

    Article  MathSciNet  Google Scholar 

  19. Peng D., Fan P.: Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences. IEEE Trans. Inf. Theory 50(9), 2149–2154 (2004).

    Article  MathSciNet  Google Scholar 

  20. Reed I.: \(k\)th-Order near-orthogonal codes. IEEE Trans. Inf. Theory 17(1), 116–117 (1971).

    Article  Google Scholar 

  21. Sarwate D.V.: Reed-Solomon Codes and the Design of Sequences for Spread-Spectrum Multiple-Access Communications. IEEE Press, Piscataway (1994).

    MATH  Google Scholar 

  22. Shaar A.A., Davis P.A.: A survey of one-coincidence sequences for frequency-hopped spread-spectrum systems. Commun. Radar Signal Process. IEE Proc. F 131(7), 719–724 (1984).

    Article  MathSciNet  Google Scholar 

  23. Sidelnikov V.M.: Some \(k\)-valued pseudo-random sequences and nearly equidistant codes. Probl. Peredachi Inf. 5(1), 16–22 (1969).

    MathSciNet  Google Scholar 

  24. Simon M.K., Omura J.K., Scholtz R.A., Levitt B.K.: Spread Spectrum Communications Handbook. McGraw-Hill, New York (1994).

    Google Scholar 

  25. Song H.Y., Reed I.S., Golomb S.W.: On the nonperiodic cyclic equivalence classes of reed-solomon codes. IEEE Trans. Inf. Theory 39(4), 1431–1434 (1993).

    Article  Google Scholar 

  26. Song, M. K., Song. H.-Y.: Correlation properties of sequences from the \(2\)-D array structure of Sidelnikov sequences of different lengths and their union. In the 2016 IEEE International Symposium on Information Theory, pp. 105–108 (2016)

  27. Su M.: New optimum frequency hopping sequences derived from fermat quotients. The Sixth International Workshop on Signal Design and Its Applications in Communications 166–169, (2013).

  28. Titlebaum E.L.: Time-frequency hop signals Part I: coding based upon the theory of linear congruences. IEEE Trans. Aerospace Electron. Syst. AES–17(4), 490–493 (1981).

    Article  Google Scholar 

  29. Udaya P., Siddiqi M.U.: Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings. IEEE Trans. Inf. Theory 44(4), 1492–1503 (1998).

    Article  MathSciNet  Google Scholar 

  30. Yu N.Y., Gong G.: New construction of \(M\)-ary sequence families with low correlation from the structure of Sidelnikov sequences. IEEE Trans. Inf. Theory 56(8), 4061–4070 (2010).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2017R1A2B4011191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Yeop Song.

Additional information

Communicated by M. Paterson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Lemma 1

Appendix: Proof of Lemma 1

Recall that \(m_l = d\) for any \(l \in \varLambda '(d)\) and \(m_l\) is the least positive integer which satisfies (5). Then, it is easy to see that

$$\begin{aligned} \left| \varLambda '(d) \right| = \frac{1}{d} \left( \frac{q^d-1}{q-1} - k -1 \right) , \end{aligned}$$
(24)

where

$$\begin{aligned} k = \sum _{\begin{array}{c} r|d \\ r \ne 1\\ r \ne d \end{array}} \left| \left\{ l \mid 1 \le l <\frac{q^d-1}{q-1}, m_l = r \right\} \right| . \end{aligned}$$
(25)

From (5), there are

$$\begin{aligned} \frac{(q^r-1)\gcd \left( \frac{d}{r}, q-1 \right) }{q-1} \end{aligned}$$

column indices from 1 to \(\frac{q^d-1}{q-1}-1\), which can be divided by

$$\begin{aligned} \frac{q^d-1}{(q^r-1) \gcd \left( \frac{d}{r}, q-1 \right) }, \end{aligned}$$

where \(2 \le r \le d\). So, we have

$$\begin{aligned} k&< \sum _{\begin{array}{c} r|d \\ r \ne d \\ r \ne 1 \end{array}} \frac{(q^r-1) \gcd \left( \frac{d}{r}, q-1 \right) }{q-1}. \end{aligned}$$
(26)

Note that any divisor of d is less than or equal to \(\lfloor d/2 \rfloor \) and \(\gcd \left( \frac{d}{r}, q-1 \right) \le q-1\). By using these, observe that

$$\begin{aligned} k&< \sum _{r=2}^{\lfloor d/2 \rfloor } \frac{(q^r-1) \gcd \left( \frac{d}{r}, q-1 \right) }{q-1}< \sum _{r=2}^{\lfloor d/2 \rfloor }q^{r} < \frac{q^{\lfloor d/2 \rfloor +1}-1}{q-1} - 1 \end{aligned}$$
(27)

By substituting (27) into (24) finally, we obtain the result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, M.K., Song, HY. Hamming correlation properties of the array structure of Sidelnikov sequences. Des. Codes Cryptogr. 87, 2537–2551 (2019). https://doi.org/10.1007/s10623-019-00636-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-019-00636-7

Keywords

Mathematics Subject Classification

Navigation