Skip to main content
Log in

Construction and enumeration for self-dual cyclic codes over \({\mathbb {Z}}_4\) of oddly even length

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

For any positive odd integer n, a precise representation for cyclic codes over \({\mathbb {Z}}_4\) of length 2n is given in terms of the Chinese Remainder Theorem. Using this representation, an efficient encoder for each of these codes is described. Then the dual codes are determined precisely and this is used to study codes which are self-dual. In particular, the number of self-dual cyclic codes over \({\mathbb {Z}}_{4}\) of length 2n can be calculated from 2-cyclotomic cosets modulo n directly. Moreover, mistakes in Blackford (Discret Appl Math 128:27–46, 2003) and Dougherty and Ling (Des Codes Cryptogr 39:127–153, 2006) are corrected. As an application, all 315 self-dual cyclic codes over \({\mathbb {Z}}_4\) of length 30 are listed. Among these codes, there are some new cyclic self-dual \({\mathbb {Z}}_4\)-codes \({\mathcal {C}}\) with parameters \((30,|{\mathcal {C}}|=2^{30},d_H=6,d_L=12)\) and \((30,|{\mathcal {C}}|=2^{30},d_H=5,d_L=10)\). From these codes and applying the Gray map from \({\mathbb {Z}}_4\) onto \({\mathbb {F}}_2^2\), formally self-dual and 2-quasicyclic binary codes with basic parameters [60, 30, 12] and [60, 30, 10] are derived respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abualrub T., Oehmke R.: On the generators of \({\mathbb{Z}}_4\) cyclic codes of length \(2^e\). IEEE Trans. Inform. Theory 49, 2126–2133 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  2. Blackford T.: Cyclic codes over \({\mathbb{Z}}_4\) of oddly even length. In: International Workshop on Coding and Cryptography (Paris, 2001), 10 pp. Electron. Notes Discret. Math., 6, Elsevier, Amsterdam (2001).

  3. Blackford T.: Cyclic codes over \({\mathbb{Z}}_4\) of oddly even length. Discret. Appl. Math. 128, 27–46 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  4. Calderbank A.R., Sloane N.J.A.: Modular and \(p\)-adic cyclic codes. Des. Codes Cryptogr. 6, 21–35 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao Y.: On constacyclic codes over finite chain rings. Finite Fields Appl. 24, 124–135 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao Y.: A class of 1-generator repeated root quasi-cyclic codes. Des. Codes Cryptogr. 72, 483–496 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao Y., Cao Y.: Negacyclic codes over the local ring \({\mathbb{Z}}_4[v]/\langle v^2+2v\rangle \) of oddly even length and their Gray images. Finite Fields Appl. 52, 67–93 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao Y., Cao Y., Li Q.: Concatenated structure of cyclic codes over \({\mathbb{Z}}_4\) of length \(4n\). Appl. Algebra Eng. Commun. Comput. 10, 279–302 (2016).

    Article  MATH  Google Scholar 

  9. Database of \({\mathbb{Z}}_4\) codes. http://www.z4codes.info. Accessed 03 September 2016.

  10. Dougherty S.T.: Algebraic Coding Theory Over Finite Commutative Rings. Briefs in Mathematics. Springer, Cham (2017).

    Book  Google Scholar 

  11. Dougherty S.T., Fernandez-Cordoba C.: Codes over \({\mathbb{Z}}_{2^k}\), gray maps and self-dual codes. Adv. Math. Commun. 5(4), 571–588 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  12. Dougherty S.T., Fernandez-Cordoba C.: Kernels and ranks of cyclic and negacyclic quaternary codes. Des. Codes Cryptogr. 81(2), 347–364 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  13. Dougherty S.T., Ling S.: Cyclic codes over \({\mathbb{Z}}_4\) of even length. Des. Codes Cryptogr. 39, 127–153 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  14. Dougherty S.T., Salturk E., Szabo S.: Codes over local rings of order 16 and binary codes. Adv. Math. Commun. 10(2), 379–391 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  15. Dougherty S.T., Kaya A., Salturk E.: Cyclic codes over local frobenius rings of order 16. Adv. Math. Commun. 11(1), 99–114 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  16. Gao J., Shi M., Wu T., Fu F.-W.: On double cyclic codes over \({\mathbb{Z}}_4\). Finite Fields Appl. 39, 233–250 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  17. Hammons Jr. A.R., Kumar P.V., Calderbank A.R., Sloane N.J.A., Solé P.: The \({ Z}_4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory 40(2), 301–319 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  18. Harada M.: Binary extremal self-dual codes of length 60 and related codes, arXiv:1706.01694v1 [math.CO], 6 Jun 2017.

  19. Harada M., Miezaki T.: An optimal odd unimodular lattice in dimension 72. Arch. Math. 97(6), 529–533 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  20. Jitman S., Sangwisut E., Udomkavanich P.: Hulls of cyclic codes over \({\mathbb{Z}}_4\), arXiv:1806.07590v1 [cs.IT] (20 Jun 2018).

  21. Pless V., Qian Z.: Cyclic codes and quadratic residue codes over \({\mathbb{Z}}_4\). IEEE Trans. Inform. Theory 42, 1594–1600 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  22. Pless V., Solé P., Qian Z.: Cyclic self-dual \({\mathbb{Z}}_4\)-codes. Finite Fields Appl. 3, 48–69 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  23. Rains F.M., Sloane N.J.A.: Self-dual Codes. Handbook of Coding Theory, vol. I, II, pp. 117–294. North-Holland, Amsterdam (1998).

    Google Scholar 

  24. Shi M., Qian L., Sok L., Aydin N., Solé P.: On constacyclic codes over \({\mathbb{Z}}_4[u]/\langle u^2-1\rangle \) and their Gray images. Finite Fields Appl. 45, 86–95 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  25. Wan Z.-X.: Quaternary Codes. World Scientific, Singapore (1997).

    Book  MATH  Google Scholar 

  26. Wan Z.-X.: Lectures on Finite Fields and Galois Rings. World Scientific, Singapore (2003).

    Book  MATH  Google Scholar 

Download references

Acknowledgements

Part of this work was done when Yonglin Cao was visiting Chern Institute of Mathematics, Nankai University, Tianjin, China. Yonglin Cao thanks the institution for the kind hospitality. This research is supported in part by the National Natural Science Foundation of China (Grant Nos. 11671235, 11801324), the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2018BA007), the Nanyang Technological University Research Grant M4080456, the Scientific Research Fund of Hubei Provincial Key Laboratory of Applied Mathematics (Hubei University) (Grant No. AM201804) and the Scientific Research Fund of Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering (No. 2018MMAEZD09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonglin Cao.

Additional information

Communicated by J. D. Key.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Generator matrices for all 315 self-dual cyclic codes over \({\mathbb {Z}}_4\) of length 30

Appendix: Generator matrices for all 315 self-dual cyclic codes over \({\mathbb {Z}}_4\) of length 30

We identify each polynomial \(a(x)=\sum _{j=0}^{29}a_jx^j\in \frac{{\mathbb {Z}}_4[x]}{\langle x^{30}-1\rangle }\) with the vector \((a_0,a_1,\ldots ,a_{29})\in {\mathbb {Z}}_4^{30}\). Then set

  1. (i)
    $$\begin{aligned} G_1=\left( \begin{array}{c} 2\theta _1(x) \\ 2x\theta _1(x)\end{array}\right) \in \mathrm{M}_{2\times 2n}({\mathbb {Z}}_4), k_{0,1}=0 \text { and } k_{1,1}=2. \end{aligned}$$
  2. (ii-1)
    $$\begin{aligned} G_{2,1}=\left( \begin{array}{c} 2\theta _2(x) \\ 2x\theta _2(x)\\ 2x^2\theta _2(x)\\ 2x^3\theta _2(x)\end{array}\right) \in \mathrm{M}_{4\times 2n}({\mathbb {Z}}_4), k_{0,2}=0 \text { and } k_{1,2}=4. \end{aligned}$$
  3. (ii-2)
    $$\begin{aligned} G_{2,2}= & {} \left( \begin{array}{c} (f_2(x)+2h(x))\theta _2(x) \\ x(f_2(x)+2h(x))\theta _2(x)\end{array}\right) \in \mathrm{M}_{2\times 2n}({\mathbb {Z}}_4), k_{0,2}=2 \text { and } \\&\quad k_{1,2}=0, \text { where } h(x)\in {\mathcal {W}}_2=\{1,1+x\}. \end{aligned}$$
  4. (iii-1)
    $$\begin{aligned} G_{3,1}=\left( \begin{array}{c} 2\theta _3(x) \\ 2x\theta _3(x)\\ \ldots \\ 2x^7\theta _3(x)\end{array}\right) \in \mathrm{M}_{8\times 2n}({\mathbb {Z}}_4), k_{0,2}=0 \text { and } k_{1,2}=8. \end{aligned}$$
  5. (iii-2)
    $$\begin{aligned} G_{3,2}= & {} \left( \begin{array}{c} (f_3(x)+2h(x))\theta _3(x) \\ x(f_3(x)+2h(x))\theta _3(x) \\ x^2(f_3(x)+2h(x))\theta _3(x) \\ x^3(f_3(x)+2h(x))\theta _3(x) \end{array}\right) \in \mathrm{M}_{4\times 2n}({\mathbb {Z}}_4), k_{0,3}=4 \text { and } \\&\quad k_{1,3}=0, \text { where } h(x)\in {\mathcal {W}}_3=\{x, x+x^2, x^2+x^3, x^3\}. \end{aligned}$$
  6. (iv-1)
    $$\begin{aligned} G_{4,1}= & {} 0, k_{0,4}=k_{1,4}=0;\\ G_{5,1}= & {} \left( \begin{array}{c} \theta _5(x) \\ x\theta _5(x) \\ \ldots \\ x^7\theta _5(x)\end{array}\right) \in \mathrm{M}_{8\times 2n}({\mathbb {Z}}_4), k_{0,5}=8 \text { and } k_{1,5}=0. \end{aligned}$$
  7. (iv-2)
    $$\begin{aligned} G_{4,2}= & {} \left( \begin{array}{c} \theta _4(x) \\ x\theta _4(x)\\ \ldots \\ x^7 \theta _4(x)\end{array}\right) \in \mathrm{M}_{8\times 2n}({\mathbb {Z}}_4), k_{0,4}=8 \text { and } k_{1,4}=0;\\ G_{5,2}= & {} 0, k_{0,5}=k_{1,5}=0. \end{aligned}$$
  8. (iv-3)
    $$\begin{aligned} G_{4,3}= & {} \left( \begin{array}{c} 2\theta _4(x) \\ 2x\theta _4(x)\\ \ldots \\ 2x^7\theta _4(x)\end{array}\right) \in \mathrm{M}_{8\times 2n}({\mathbb {Z}}_4), k_{0,4}=0 \text { and } k_{1,4}=8;\\ G_{5,3}= & {} \left( \begin{array}{c} 2\theta _5(x) \\ 2x\theta _5(x)\\ \ldots \\ 2x^7\theta _5(x)\end{array}\right) \in \mathrm{M}_{8\times 2n}({\mathbb {Z}}_4), k_{0,5}=0 \text { and } k_{1,5}=8. \end{aligned}$$
  9. (iv-4)
    $$\begin{aligned} G_{4,4}= & {} \left( \begin{array}{c} 2{\overline{f}}_4(x)\theta _4(x)\\ 2x{\overline{f}}_4(x)\theta _4(x)\\ 2x^2{\overline{f}}_4(x)\theta _4(x)\\ 2x^3{\overline{f}}_4(x)\theta _4(x)\end{array}\right) \in \mathrm{M}_{4\times 2n}({\mathbb {Z}}_4), k_{0,4}=0 \text { and } k_{1,4}=4;\\ G_{5,4}= & {} \left( \begin{array}{c} f_5(x)\theta _5(x)\\ xf_5(x)\theta _5(x)\\ x^2f_5(x)\theta _5(x)\\ x^3f_5(x)\theta _5(x)\\ 2\theta _5(x)\\ 2x\theta _5(x)\\ 2x^2\theta _5(x)\\ 2x^3\theta _5(x)\end{array}\right) \in \mathrm{M}_{8\times 2n}({\mathbb {Z}}_4), k_{0,5}=4 \text { and } k_{1,5}=4. \end{aligned}$$
  10. (iv-5)
    $$\begin{aligned} G_{4,5}= & {} \left( \begin{array}{c} f_4(x)\theta _4(x)\\ xf_4(x)\theta _4(x)\\ x^2f_4(x)\theta _4(x)\\ x^3f_4(x)\theta _4(x)\\ 2\theta _4(x)\\ 2x\theta _4(x)\\ 2x^2\theta _4(x)\\ 2x^3\theta _4(x)\end{array}\right) \in \mathrm{M}_{8\times 2n}({\mathbb {Z}}_4), k_{0,4}=4 \text { and } k_{1,4}=4;\\ G_{5,5}= & {} \left( \begin{array}{c} 2{\overline{f}}_5(x)\theta _5(x)\\ 2x{\overline{f}}_5(x)\theta _5(x)\\ 2x^2{\overline{f}}_5(x)\theta _5(x)\\ 2x^3{\overline{f}}_5(x)\theta _5(x)\end{array}\right) \in \mathrm{M}_{4\times 2n}({\mathbb {Z}}_4), k_{0,5}=0 \text { and } k_{1,5}=4. \end{aligned}$$
  11. (iv-6)

    Let \(a,b,c,d\in \{0,1\}\).

    $$\begin{aligned} G_{4,6}= & {} \left( \begin{array}{c} (f_4(x)+2(a+bx+cx^2+dx^3)\theta _4(x) \\ x(f_4(x)+2(a+bx+cx^2+dx^3)\theta _4(x) \\ x^2(f_4(x)+2(a+bx+cx^2+dx^3)\theta _4(x) \\ x^3(f_4(x)+2(a+bx+cx^2+dx^3)\theta _4(x) \end{array}\right) \\&\quad \in \mathrm{M}_{4\times 2n}({\mathbb {Z}}_4), k_{0,4}=4 \text { and } k_{1,4}=0;\\ G_{5,6}= & {} \left( \begin{array}{c} (f_5(x)+2(a+dx+cx^2+(1+a+b)x^3)\theta _5(x) \\ x(f_5(x)+2(a+dx+cx^2+(1+a+b)x^3)\theta _5(x) \\ x^2(f_5(x)+2(a+dx+cx^2+(1+a+b)x^3)\theta _5(x) \\ x^3(f_5(x)+2(a+dx+cx^2+(1+a+b)x^3)\theta _5(x)\end{array}\right) \\&\quad \in \mathrm{M}_{4\times 2n}({\mathbb {Z}}_4), k_{0,5}=4 \text { and } k_{1,5}=0, \end{aligned}$$

Then, by Theorem 1, all of the 315 self-dual codes over \({\mathbb {Z}}_4\) of length 30 are generated by one of the following 315 matrices:

$$\begin{aligned} G_{(i,j,l)}=\left( \begin{array}{c}G_1\\ G_{2,i}\\ G_{3,j}\\ G_{4,l} \\ G_{5,l}\end{array}\right) , \ 1\le i,j\le 2, \ 1\le l\le 6. \end{aligned}$$

Precisely, the self-dual codes over \({\mathbb {Z}}_4\) of length 30 with generator matrix \(G_{(i,j,l)}\) are of type \(4^{k_{2,0}+k_{3,0}+k_{4,0}}2^{2+k_{2,1}+k_{3,1}+k_{4,1}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Cao, Y., Dougherty, S.T. et al. Construction and enumeration for self-dual cyclic codes over \({\mathbb {Z}}_4\) of oddly even length. Des. Codes Cryptogr. 87, 2419–2446 (2019). https://doi.org/10.1007/s10623-019-00629-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-019-00629-6

Keywords

Mathematics Subject Classification

Navigation