Skip to main content
Log in

Linked systems of symmetric group divisible designs of type II

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Linked systems of symmetric group divisible designs of type II are introduced, and several examples are obtained from affine resolvable designs and a variant of mutually orthogonal Latin squares. Furthermore, an equivalence between such symmetric group divisible designs and some association schemes with 5-classes is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. If \(k=\lambda _1\), then its incidence matrix A satisfies that \(A=\bar{A}\otimes J_n\) for some incidence matrix \(\bar{A}\) of a symmetric design.

  2. In [11] the theorems are valid under the assumption \(k>\lambda _1\). If \(k=\lambda _1\), then linked systems of symmetric group divisible designs are \(A_{i,j}\otimes J_n\) where \(A_{i,j}\)’s are linked systems of symmetric designs.

References

  1. Bannai E.: Subschemes of some association schemes. J. Algebra 144, 167–188 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  2. Bannai E., Ito T.: Algebraic Combinatorics I: Association Schemes. Benjamin/Cummings, Menlo Park, CA (1984).

    MATH  Google Scholar 

  3. Bose R.C.: Symmetric group divisible designs with the dual property. J. Stat. Plan. Inference 1, 87–101 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  4. Colbourn Charles J., Dinitz Jeffrey H. (eds.): Handbook of Combinatorial Designs, 2nd edn, Part IV. Chapman & Hall/CRC, Boca Raton (2006).

  5. van Dam E.: Three-class association schemes. J. Algebraic Comb. 10(1), 69–107 (1999).

    Google Scholar 

  6. van Dam E., Martin W., Muzychuk M.: Uniformity in association schemes and coherent configurations: cometric Q-antipodal schemes and linked systems. J. Comb. Theory Ser. A 120, 1401–1439 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  7. Holzmann W.H., Kharaghani H., Orrick W.: On the Real Unbiased Hadamard Matrices. Combinatorics and Graphs. Contemporary Mathematics, vol. 531, pp. 243–250. American Mathematical Society, Providence, RI (2010).

  8. Holzmann W.H., Kharaghani H., Suda S.: Mutually unbiased biangular vectors and association schemes. In: Colbourn C.J. (ed.) Algebraic Design Theory and Hadamard Matrices, vol. 133, pp. 149–157. Springer Proceedings in Mathematics Statistics. Springer, Berlin (2015).

  9. Ivanov N.V.: Affine planes, ternary rings, and examples of non-Desarguesian planes. arXiv:1604.04945.

  10. Kharaghani H., Sasani S., Suda S.: Mutually unbiased Bush-type Hadamard matrices and association schemes. Electron. J. Comb. 22, \( {\rm {\# }}\)P3.10 (2015).

  11. Kharaghani H., Suda S.: Linked systems of symmetric group divisible designs. J. Algebraic Comb. 47, 319–343 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  12. Kharaghani H., Suda S.: Commutative association schemes obtained from twin prime powers, Fermat primes, Mersenne primes, preprint. arXiv:1709.08150.

  13. Kharaghani H., Suda S.: Disjoint weighing matrices, in preparation.

  14. Kharaghani H., Torabi R.: On a decomposition of complete graphs. Gr. Comb. 19(4), 519–526 (2003).

    Article  MATH  Google Scholar 

  15. Koukouvinos C.: Some new orthogonal designs in linear regression models. Stat. Probab. Lett. 29(2), 125–129 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  16. LeCompte N., Martin W.J., Owens W.: On the equivalence between real mutually unbiased bases and a certain class of association schemes. Eur. J. Comb. 31, 1499–1512 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  17. Mathon R.: The systems of linked 2-(16,6,2) designs. Ars Comb. 11, 131–148 (1981).

    MathSciNet  MATH  Google Scholar 

  18. Muzychuk M.E.: V-rings of permutation groups with invariant metric, Ph.D. thesis, Kiev State University (1987).

  19. Qiao Z., Du S.F., Koolen J.H.: \(2\)-Walk regular dihedrants from group divisible designs. Electron. J. Comb. 23, \( {\rm {\# }}\)P2.51 (2016).

  20. Robinson P.J.: Using product designs to construct orthogonal designs. Bull. Aust. Math. Soc. 16, 297–305 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  21. Stinson D.R.: Combinatorial Designs: Constructions and Analysis. Springer, New York (2004).

    MATH  Google Scholar 

  22. Wallis W.D.: Construction of strongly regular graphs using affine designs. Bull. Aust. Math. Soc. 4, 41–49 (1971).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for many useful comments, especially for suggesting a change that significantly shortened the proof of Proposition 3.2. Hadi Kharaghani is supported by an NSERC Discovery Grant. Sho Suda is supported by JSPS KAKENHI Grant Number 15K21075, 18K03395.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sho Suda.

Additional information

Communicated by M. Buratti.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharaghani, H., Suda, S. Linked systems of symmetric group divisible designs of type II. Des. Codes Cryptogr. 87, 2341–2360 (2019). https://doi.org/10.1007/s10623-019-00622-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-019-00622-z

Keywords

Mathematics Subject Classification

Navigation