Skip to main content
Log in

A new construction of zero-difference balanced functions and two applications

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Zero-difference balanced (ZDB) functions are a generalization of perfect nonlinear functions, and have received a lot of attention due to their important applications in coding theory, cryptography, combinatorics and some engineering areas. In this paper, based on cyclotomy and generalized cyclotomy, a construction of a partitioned difference family is presented, and then a class of ZDB functions is obtained. In addition, these ZDB functions are applied to construct optimal constant composition codes and optimal and perfect difference systems of sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For odd e, Proposition 1(4) of [26] proved that \((I,\ J)=(J + \frac{F_{n_1}}{2},\ I + \frac{F_{n_1}}{2})\). Here we replace \(\frac{F_{n_1}}{2}\) by \(\frac{F_{n_1}}{2e}\) directly since \(\prod _{s=1}^r h_{t_s}^{\frac{\varphi (p_{{t_s}}^{m'_{t_s}})}{e}}=g\).

References

  1. Apostol T.M.: Introduction to Analytic Number Theory. Springer, New York (1976).

    Book  MATH  Google Scholar 

  2. Bachmann P.: Die Lehre von der Kreisteilung. Zweite Aufl, Leipzing (1921).

    Google Scholar 

  3. Buratti M.: Hadamard partitioned difference families and their descendants. Cryptogr. Commun. https://doi.org/10.1007/s12095-018-0308-3.

  4. Buratti M., Yan J., Wang C.: From a 1-rotational RBIBD to a partitioned difference family. Electron. J. Comb. 17, 1971–1975 (2010).

    MathSciNet  MATH  Google Scholar 

  5. Cai H., Zeng X., Helleseth T., Tang X., Yang Y.: A new construction of zero-difference balanced functions and its applications. IEEE Trans. Inf. Theory 59, 5008–5015 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai H., Zhou Z., Tang X., Miao Y.: Zero-difference balanced functions with new parameters and their applications. IEEE Trans. Inf. Theory 63, 4379–4387 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  7. Ding C.: Optimal constant composition codes from zero-difference balanced functions. IEEE Trans. Inf. Theory 54, 5766–5770 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  8. Ding C.: Optimal and perfect difference systems of sets. J. Comb. Theory Ser. A 116, 109–119 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  9. Ding C., Tan Y.: Zero-difference balanced functions with applications. J. Stat. Theory Pract. 6, 3–19 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  10. Ding C., Yin J.: Algebraic constructions of constant composition codes. IEEE Trans. Inf. Theory 51, 1585–1589 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  11. Ding C., Yin J.: Combinatorial constructions of optimal constant-composition codes. IEEE Trans. Inf. Theory 51, 3671–3674 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  12. Ding C., Yuan J.: A family of optimal constant-composition codes. IEEE Trans. Inf. Theory 51, 3668–3671 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  13. Ding C., Wang Q., Xiong M.: Three new families of zero-difference balanced functions with applications. IEEE Trans. Inf. Theory 60, 2407–2413 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  14. Ge G., Fuji-Hara R., Miao Y.: Further combinatorial constructions for optimal frequency-hopping sequences. J. Comb. Theory Ser. A 113, 1699–1718 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  15. Ge G., Miao Y., Yao Z.: Optimal frequency hopping sequences: auto- and cross-correlation properties. IEEE Trans. Inf. Theory 55, 867–879 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  16. Lempel A., Greenberger H.: Families of sequences with optimal Hamming-correlation properties. IEEE Trans. Inf. Theory 20, 90–94 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  17. Li S., Wei H., Ge G.: Generic constructions for partitioned difference families with applications: a unified combinatorial approach. Des. Codes Cryptogr. 82, 583–599 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  18. Luo Y., Fu F., Vinck A.J.H., Chen W.: On constant-composition codes over \({\mathbb{Z}}_q\). IEEE Trans. Inf. Theory 49, 3010–3016 (2003).

    Article  MATH  Google Scholar 

  19. Muskat J.B.: The cyclotomic numbers of order fourteen. Acta Arith. 11, 263–279 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  20. Nyberg K.: Perfect nonlinear S-boxes. In: Proceedings of EUROCRYPT’91. Lecture Notes in Computer Science, vol. 547, pp. 378–386. Springer, Berlin (1991).

  21. Su W.: Two classes of new zero difference balanced functions from difference balanced functions and perfect ternary sequences. IEICE Trans. Fundam. E100–A, 839–845 (2017).

    Article  Google Scholar 

  22. Wang H.: A new bound for difference systems of sets. J. Comb. Math. Comb. Comput. 58, 161–167 (2006).

    MathSciNet  MATH  Google Scholar 

  23. Wang Q., Zhou Y.: Sets of zero-difference balanced functions and their applications. Adv. Math. Commun. 8, 83–101 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang Y., Zhou Z., Tang X.: Two classes of zero-difference balanced functions and their optimal constant composition codes. In: Proceedings of 2016 IEEE International Symposium on Information Theory, pp. 1327–1330 (2016).

  25. Zha Z., Hu L.: Cyclotomic constructions of zero-difference balanced functions with applications. IEEE Trans. Inf. Theory 61, 1491–1495 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  26. Zeng X., Cai H., Tang X., Yang Y.: Optimal frequency hopping sequences of odd length. IEEE Trans. Inf. Theory 59, 3237–3248 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhou Z., Tang X., Wu D., Yang Y.: Some new classes of zero-difference balanced functions. IEEE Trans. Inf. Theory 58, 139–145 (2012).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.61402524, No.11701553, No.61872383). The work of Jiang Yupeng was also supported by Foundation of Science and Technology on Information Assurance Laboratory (61421120102162112007). The work of Zheng Qunxiong was also supported by National Postdoctoral Program for Innovative Talents (BX201600188) and by China Postdoctoral Science Foundation funded project (2017M611035) and by Young Elite Scientists Sponsorship Program by CAST (2016QNRC001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qunxiong Zheng.

Additional information

Communicated by C. Ding.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Lemma 1

Proof

(i) Using Eqs. (1) and (2), we have

$$\begin{aligned} \sum \limits _{I=0}^{f-1}(I,\ I) = \sum \limits _{I=0}^{f-1}(f-I,\ 0) = \sum \limits _{I=0}^{f-1}(I,\ 0) = e-1. \end{aligned}$$

(ii) Since e is odd, by Eq. (3) we have

$$\begin{aligned} \sum \limits _{I=0}^{\frac{f}{2}-1}(I,\ I) = \sum \limits _{I=0}^{\frac{f}{2}-1}\left( I+\frac{f}{2},\ I+\frac{f}{2}\right) = \sum \limits _{I=\frac{f}{2}}^{f-1}(I,\ I), \end{aligned}$$

and hence

$$\begin{aligned} \sum \limits _{I=0}^{\frac{f}{2}-1}(I,\ I) = \frac{1}{2}\sum \limits _{I=0}^{f-1}(I,\ I)=\frac{1}{2}(e-1). \end{aligned}$$

(iii) Note that for each \(0\le J\le f-1\),

$$\begin{aligned} \sum \limits _{I=0}^{f-1}(I-J,\ I-J) = e-1\ \ \mathrm {and}\ \ \sum \limits _{I=0}^{\frac{f}{2}-1}(I-J,\ I-J)=\sum \limits _{I=\frac{f}{2}}^{f-1}(I-J,\ I-J). \end{aligned}$$

So

$$\begin{aligned} \sum \limits _{I=0}^{\frac{f}{2}-1}(I-J,\ I-J) =\frac{1}{2}(e-1)\ \ \mathrm {for\ each}\ 0\le J\le f-1. \end{aligned}$$

\(\square \)

Appendix B: Proof of Lemma 2

Proof

(i) By setting \(J=(0, 0, \ldots , 0)\) and \(t=0\) in Eq. (5), we immediately have

$$\begin{aligned} \sum \limits _{I\in \varPsi _{n_1}}(I,\ I) = e-1. \end{aligned}$$

(ii) Since \(e\ge 3\) is odd, we observe that as the first coordinate \(i_1\) of I runs over the set \(\{0, \ldots , \frac{\left( F_{n_1}\right) _1}{2e}-1\}\), the first coordinate \(i_1+\frac{\left( F_{n_1}\right) _1}{2e}\) of \(I+\frac{F_{n_1}}{2e}\) will run over the set \(\{\frac{\left( F_{n_1}\right) _1}{2e}, \ldots , \frac{\left( F_{n_1}\right) _1}{e}-1\}\). Hence, using Eq. (6), we have

$$\begin{aligned} \sum \limits _{\begin{array}{c} I=(i_1, \ldots , i_{r})\in \varPsi _{n_1},\\ 0\le i_1< \frac{\left( F_{n_1}\right) _1}{2e} \end{array}}(I,\ I)= \sum \limits _{\begin{array}{c} I=(i_1, \ldots , i_{r})\in \varPsi _{n_1},\\ 0\le i_1< \frac{\left( F_{n_1}\right) _1}{2e} \end{array}}\left( I+\frac{F_{n_1}}{2e},\ I+\frac{F_{n_1}}{2e}\right) = \sum \limits _{\begin{array}{c} I=(i_1, \ldots , i_{r})\in \varPsi _{n_1},\\ \frac{\left( F_{n_1}\right) _1}{2e}\le i_1< \frac{\left( F_{n_1}\right) _1}{e} \end{array}}(I,\ I). \end{aligned}$$

Therefore, by combining this with (i), we get

$$\begin{aligned} \sum \limits _{\begin{array}{c} I=(i_1, \ldots , i_{r})\in \varPsi _{n_1},\\ 0\le i_1< \frac{\left( F_{n_1}\right) _1}{2e} \end{array}}(I,\ I)=\frac{1}{2}\sum \limits _{I\in \varPsi _{n_1}}(I,\ I)=\frac{1}{2}(e-1). \end{aligned}$$

(iii) Note that for each \(J\in \varPsi _{n_1}\),

$$\begin{aligned} \sum \limits _{I\in \varPsi _{n_1}}(I-J,\ I-J) = e-1 \end{aligned}$$

and

$$\begin{aligned} \sum \limits _{\begin{array}{c} I=(i_1, \ldots , i_{r})\in \varPsi _{n_1},\\ 0\le i_1< \frac{\left( F_{n_1}\right) _1}{2e} \end{array}}(I-J,\ I-J)=\sum \limits _{\begin{array}{c} I=(i_1, \ldots , i_{r})\in \varPsi _{n_1},\\ \frac{\left( F_{n_1}\right) _1}{2e}\le i_1< \frac{\left( F_{n_1}\right) _1}{e} \end{array}}(I-J,\ I-J), \end{aligned}$$

and so

$$\begin{aligned} \sum \limits _{\begin{array}{c} I=(i_1, \ldots , i_{r})\in \varPsi _{n_1},\\ 0\le i_1< \frac{\left( F_{n_1}\right) _1}{2e} \end{array}}(I-J,\ I-J) =\frac{1}{2}(e-1)\ \ \mathrm {for\ each}\ J\in \varPsi _{n_1}. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Jiang, Y., Zheng, Q. et al. A new construction of zero-difference balanced functions and two applications. Des. Codes Cryptogr. 87, 2251–2265 (2019). https://doi.org/10.1007/s10623-019-00616-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-019-00616-x

Keywords

Mathematics Subject Classification

Navigation