Skip to main content
Log in

Optimal binary constant weight codes and affine linear groups over finite fields

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The affine linear group of degree one, \(\text {AGL}(1,\mathbb {F}_q)\), over the finite field \(\mathbb {F}_q\), acts sharply two-transitively on \(\mathbb {F}_q\). Given \(S<\text {AGL}(1,\mathbb {F}_q)\) and an integer k, \(1\le k\le q\), does there exist a k-element subset \(B\subset \mathbb {F}_q\) whose set-wise stabilizer is S? Our main result is the derivation of two formulas which provide an answer to this question. This result allows us to determine all possible parameters of binary constant weight codes that are constructed from the action of \(\text {AGL}(1,\mathbb {F}_q)\) on \(\mathbb {F}_q\) to meet the Johnson bound. Consequently, for many parameters, we are able to determine the values of the function \(A_2(n,d,w)\), which is the maximum number of codewords in a binary constant weight code of length n, weight w and minimum distance \(\ge d\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrell E., Vardy A., Zeger K.: Upper bounds for constant-weight codes. IEEE Trans. Inf. Theory 46, 2373–2395 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  2. Bender E.A., Goldman J.R.: On the applications Möbius inversion in combinatorial analysis. Am. Math. Mon. 82, 789–803 (1975).

    MATH  Google Scholar 

  3. Brouwer A.E., Etzion T.: Some new distance-4 constant weight codes. Adv. Math. Commun. 5, 417–424 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  4. Brouwer A.E., Shearer J.B., Sloane N.J.A., Smith W.D.: A new table of constant weight codes. IEEE Trans. Inf. Theory 36, 1334–1380 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  5. Cameron P.J., Maimani H.R., Omidi G.R., Tayfeh-Rezaie B.: 3-Designs from \(\text{ PSL }(2, q)\). Discret. Math. 306, 3063–3073 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  6. Cameron P.J., Omidi G.R., Tayfeh-Rezaie B.: 3-Designs from \(\text{ PGL }(2, q)\). Electron. J. Comb. 13, R50 (2006).

    MathSciNet  MATH  Google Scholar 

  7. Chee Y.M., Xing C., Yeo S.L.: New constant-weight codes from propagation rules. IEEE Trans. Inf. Theory 56, 1596–1599 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  8. Hou X.: Optimal binary constant weight codes and affine groups over finite fields. arXiv:1707.02315.

  9. Hou X.: The Möbius function of the affine linear \(\text{ AGL }(1,q)\), preprint.

  10. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge, UK (2003).

    Book  MATH  Google Scholar 

  11. Johnson S.M.: A new bound for error-correcting codes. IEEE Trans. Inf. Theory 8, 203–207 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  12. Östergård P.R.J.: Classification of binary constant weight codes. IEEE Trans. Inf. Theory 56, 3779–3785 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  13. Schrijver A.: New code upper bounds from the Terwilliger algebra and semidefinite programming. IEEE Trans. Inf. Theory 51, 2859–2866 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  14. Semakov N.V., Zinov’ev V.A.: Balanced codes and tactical configurations. Probl. Inf. Transm. 5, 22–28 (1969).

    MathSciNet  MATH  Google Scholar 

  15. Smith D.H., Hughes L.A., Perkins S.: A new table of constant weight codes of length greater than 28. Electron. J. Comb. 13 Article 2 (2006).

  16. Sun H.-M.: From planar nearrings to generating blocks. Taiwan. J. Math. 14, 1713–1739 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  17. Sun H.-M.: Some sequences of optimal constant weight codes. J. Alg. Appl. 17, 1850027 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  18. Tonchev V.D.: Combinatorial Configurations. Longman-Wiley, New York (1988).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Dong Hou.

Additional information

Communicated by Q. Xiang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A1. A Mathematica code for computing \({\mathcal {N}}(S(\gamma ^{(q-1)/d},0,H),k)\)

In the following Mathematica program, the input is \(q=p^\alpha \); the output is the array \((k,d,o_d(p),i,j,\beta ,{\mathcal {N}})\), where

$$\begin{aligned}&0\le k\le p^\alpha /2,\\&d\mid p^\alpha -1,\\&i\mid (\alpha /o_d(p)),\\&{\left\{ \begin{array}{ll} j=0,1&{}\text {if}\ i=\alpha /o_d(p),\\ 0<j<\alpha /o_d(p)i&{}\text {if}\ i<\alpha /o_d(p), \end{array}\right. }\\&\beta =o_d(\alpha )ij,\\&k\equiv 0\ \text {or}\ p^\beta \pmod {dp^\beta },\\&{\mathcal {N}}={\mathcal {N}}(S(\gamma ^{(q-1)/d},0,H),k), \text {where} |H|=p^\beta ,\; |H^\dagger |=p^{o_d(p)i}. \end{aligned}$$
(A1.1)
figure a

1.2 A2. Numerical results

Table 1 gives the values of \({\mathcal {N}}(S(\gamma ^{(q-1)/d},0,H),k)\) for \(q\le 16\). To recall the meanings of and the conditions on the parameters, refer to (A1.1) in Appendix A1.

Table 1 Values of \(\mathcal N=\mathcal N(S(\gamma ^{(q-1)/d},0,H),k)\), \(q\le 16\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, XD. Optimal binary constant weight codes and affine linear groups over finite fields. Des. Codes Cryptogr. 87, 1815–1838 (2019). https://doi.org/10.1007/s10623-018-0581-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-018-0581-3

Keywords

Mathematics Subject Classification

Navigation