Skip to main content
Log in

Existence of frame-derived H-designs

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

An H-design H(vgkt) is a triple \((X, \mathcal{G},\mathcal{B})\), where X is a set of gv points, \(\mathcal{G}\) is a partition of X into v disjoint groups of size g, and \(\mathcal{B}\) is a set of \(\mathcal{G}\)-transverse k-subsets, called blocks, such that each \(\mathcal{G}\)-transverse t-subset is contained in exactly one block of \(\mathcal{B}\). A frame-derived H-design FDH(vg, 4, 3) is an H(vg, 4, 3) whose derived design at every point forms a Kirkman frame, an H\((v-1,g,3,2)\) having a resolution into \(g(v-1)/2\) holey parallel classes. FDH(vg, 4, 3)s are proved to be effective designs to produce large sets of Kirkman triple systems (LKTS) in this paper. Related recursive constructions are established and direct constructions for FDH(v, 2, 4, 3)s are displayed by using automorphism groups. The existence result on LKTS is improved as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cayley A.: On the triadic arrangements of seven and fifteen things. Lond. Edinb. Dublin Philos. Mag. J. Sci. 37(247), 50–53 (1850).

    Article  Google Scholar 

  2. Chang Y., Zhou J.: Large sets of Kirkman triple systems and related designs. J. Comb. Theory 120, 649–670 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  3. Chang Y., Fan B., Feng T., Holt D.F., Östergård P.R.J.: Classification of cyclic Steiner quadruple systems. J. Comb. Des. 25, 103–121 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  4. Hanani H.: On quadruple systems. Can. J. Math. 12, 145–157 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  5. Hanani H.: On some tactical configurations. Can. J. Math. 15, 702–722 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  6. Ji L.: A new existence proof for large sets of disjoint Steiner triple systems. J. Comb. Theory 112, 308–327 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  7. Ji L.: An improvement on H design. J. Comb. Des. 17, 25–35 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  8. Ji L.: Existence of H designs (preprint).

  9. Lei J.: On large sets of Kirkman triple systems and \(3\)-wise balanced design. Discret. Math. 279, 345–354 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  10. Lu J.: On large sets of disjoint Steiner triple systems, I–III. J. Comb. Theory 34, 140–182 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  11. Lu J.: On large sets of disjoint Steiner triple systems, IV–VI. J. Comb. Theory 37, 136–192 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  12. Lu J.: Collected Works of Lu Jiaxi on Combinatorial Designs. Inner Mongolia People’s Press, Huhhot (1990).

    Google Scholar 

  13. Mills W.H.: On the existence of H designs. Congr. Numer. 79, 129–141 (1990).

    MathSciNet  MATH  Google Scholar 

  14. Mohácsy H., Ray-Chaudhuri D.K.: Candelabra systems and designs. J. Stat. Plan. Inference 106, 419–448 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  15. Muse W.B., Phelps K.T.: Orthogonal quadruple systems and \(3\)-frames. J. Comb. Theory 104, 115–124 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  16. Ray-Chaudhuri D.K., Wilson R.M.: Solution of Kirkman’s schoolgirl problem. Proc. Symp. Pure Math. 19, 187–204 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  17. Stinson D.R.: A survey of Kirkman triple systems and related designs. Discret. Math. 92, 371–393 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  18. Teirlinck L.: A completion of Lu’s determination of the spectrum for large sets of disjoint Steiner triple systems. J. Comb. Theory 57, 302–305 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  19. Teirlinck L.: Some new \(2\)-resolvable Steiner quadruple systems. Des. Codes Cryptogr. 4, 5–10 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  20. Yuan L., Kang Q.: Another construction for large sets of Kirkman triple systems. Des. Codes Cryptogr. 48, 35–42 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhou J., Chang Y.: New results on large sets of Kirkman triple systems. Des. Codes Cryptogr. 55, 1–7 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhou J., Chang Y.: A new result on Sylvester’s problem. Discret. Math. 331, 15–19 (2014).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Prof. L. Zhu for very kind suggestions and many helpful discussions on this topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junling Zhou.

Additional information

Communicated by L. Teirlinck.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by NSFC grants 11431003 and 11571034.

Appendix

Appendix

We show the existence of an FDH(v, 2, 4, 3) where \(v\in \{29,47,59,71,83\}\) to prove Lemma 3.6. First we construct an H(v, 2, 4, 3) on \(\mathbb {Z}_{2v}\) with groups \(G_i=\{i,i+v\}\), \(0\le i\le v-1\) by Theorem 3.4. The construction makes use of an automorphism group \(\Lambda =\{\tau _{m,g}:m\in M,g\in \mathbb {Z}_{2v},2|g\}\), where \(M=\langle \alpha \rangle \) is a cyclic multiplier group of order k generated by the element \(\alpha \). We list the starter blocks in \(\mathcal{B}_0\). With the H-designs in hand we only need to check the derived designs at \(x=0,v\) are KF\((2^{v-1})\), which will be fulfilled by checking conditions in Theorem 3.4. We list all the starter holey parallel classes to support our conclusion, in which \(P_x^s\) (\(x=0,v\)) stands for a holey parallel class of the derived design at the point x missing the group \(G_s=\{s,s+v\}\).

(1) \(v=29,\alpha =7,k=7\)

\(\mathcal{B}_0:\)

\(1\ 6\ 16\ 40\)

\(8\ 12\ 45\ 50\)

\(2\ 10\ 18\ 54\)

\(2\ 7\ 8\ 12\)

\(5\ 6\ 8\ 44\)

\(11\ 14\ 24\ 52\)

\(14\ 40\ 44\ 51\)

\(2\ 10\ 15\ 26\)

\(2\ 4\ 15\ 38\)

\(1\ 14\ 26\ 52\)

\(0\ 2\ 16\ 27\)

\(0\ 16\ 18\ 26\)

\(19\ 20\ 51\ 56\)

\(4\ 27\ 43\ 46\)

\(5\ 41\ 48\ 52\)

\(9\ 15\ 28\ 48\)

\(15\ 20\ 25\ 28\)

\(3\ 12\ 23\ 26\)

\(7\ 18\ 20\ 39\)

\(3\ 12\ 19\ 20\)

\(10\ 12\ 49\ 51\)

\(5\ 6\ 27\ 52\)

\(3\ 4\ 15\ 22\)

\(2\ 4\ 21\ 25\)

\(1\ 11\ 21\ 38\)

\(7\ 17\ 26\ 43\)

\(8\ 13\ 25\ 51\)

\(2\ 9\ 13\ 43\)

\(13\ 51\ 53\ 54\)

\(1\ 17\ 24\ 51\)

\(0\ 15\ 23\ 25\)

\(16\ 21\ 23\ 51\)

\(9\ 37\ 44\ 49\)

\(1\ 3\ 17\ 52\)

\(3\ 7\ 13\ 27\)

\(3\ 5\ 9\ 51\)

    

\({P}_0^{9}:\)

\(1\ 51\ 53 \)

\(7\ 8\ 49 \)

\(23\ 28\ 43 \)

\(6\ 24\ 45 \)

\(25\ 30\ 48 \)

\(36\ 42\ 50 \)

\(20\ 37\ 44 \)

\(27\ 31\ 52 \)

\(4\ 22\ 55 \)

\(10\ 16\ 41 \)

\(14\ 19\ 35 \)

\(2\ 18\ 56 \)

\(21\ 34\ 40 \)

\(11\ 13\ 39 \)

\(3\ 17\ 47 \)

\(5\ 32\ 54 \)

\(12\ 15\ 57 \)

\(26\ 33\ 46 \)

\({ P}_0^{19}:\)

\(1\ 20\ 54 \)

\(26\ 36\ 44 \)

\(30\ 34\ 57 \)

\(24\ 25\ 41 \)

\(8\ 16\ 52 \)

\(33\ 49\ 51 \)

\(37\ 40\ 55 \)

\(5\ 22\ 39 \)

\(3\ 11\ 35 \)

\(10\ 18\ 32 \)

\(14\ 42\ 53 \)

\(15\ 21\ 45 \)

\(4\ 47\ 56 \)

\(6\ 28\ 46 \)

\(2\ 7\ 43 \)

\(23\ 31\ 38 \)

\(9\ 12\ 17 \)

\(13\ 27\ 50 \)

\({P}_0^{45}:\)

\(6\ 47\ 53\)

\(8\ 22\ 48\)

\(21\ 26\ 38\)

\(4\ 44\ 49\)

\(15\ 24\ 39\)

\(9\ 10\ 30\)

\(5\ 37\ 57\)

\(3\ 34\ 52\)

\(11\ 12\ 33\)

\(20\ 25\ 50\)

\(17\ 18\ 42\)

\(1\ 14\ 27\)

\(7\ 31\ 46\)

\(13\ 28\ 32\)

\(23\ 35\ 56\)

\(19\ 36\ 54\)

\(40\ 41\ 43\)

\(2\ 51\ 55\)

\({ P}_0^{55}:\)

\(1\ 41\ 49 \)

\(10\ 34\ 53 \)

\(14\ 25\ 56 \)

\(5\ 7\ 35 \)

\(8\ 11\ 23 \)

\(30\ 40\ 47 \)

\(2\ 46\ 50 \)

\(6\ 17\ 52 \)

\(12\ 27\ 39 \)

\(24\ 33\ 42 \)

\(3\ 13\ 54 \)

\(18\ 21\ 43 \)

\(4\ 9\ 36 \)

\(15\ 22\ 28 \)

\(16\ 19\ 32 \)

\(38\ 44\ 51 \)

\(20\ 48\ 57 \)

\(31\ 37\ 45 \)

\({ P}_{29}^{9}:\)

\(1\ 37\ 55\)

\(27\ 32\ 39\)

\(15\ 17\ 28\)

\(3\ 21\ 34\)

\(31\ 48\ 50\)

\(7\ 43\ 52\)

\(19\ 30\ 44\)

\(2\ 14\ 41\)

\(8\ 11\ 47\)

\(16\ 33\ 56\)

\(36\ 40\ 51\)

\(4\ 24\ 54\)

\(10\ 22\ 53\)

\(6\ 12\ 18\)

\(23\ 26\ 46\)

\(5\ 42\ 57\)

\(13\ 20\ 45\)

\(25\ 35\ 49\)

\({ P}_{29}^{19}:\)

\(1\ 16\ 26\)

\(3\ 40\ 42\)

\(15\ 30\ 33\)

\(4\ 39\ 57\)

\(14\ 22\ 56\)

\(7\ 34\ 38\)

\(6\ 24\ 51\)

\(12\ 28\ 47\)

\(9\ 45\ 50\)

\(18\ 46\ 54\)

\(10\ 25\ 27\)

\(37\ 41\ 52\)

\(32\ 53\ 55\)

\(2\ 11\ 23\)

\(21\ 43\ 49\)

\(8\ 17\ 35\)

\(20\ 31\ 44\)

\(5\ 13\ 36\)

\({ P}_{29}^{45}:\)

\(1\ 36\ 41\)

\(7\ 15\ 35\)

\(19\ 24\ 32\)

\(11\ 18\ 39\)

\(8\ 33\ 40\)

\(5\ 14\ 48\)

\(2\ 37\ 53\)

\(12\ 13\ 46\)

\(17\ 31\ 51\)

\(22\ 27\ 57\)

\(3\ 44\ 49\)

\(20\ 30\ 50\)

\(4\ 34\ 52\)

\(9\ 21\ 26\)

\(6\ 23\ 54\)

\(25\ 38\ 43\)

\(10\ 47\ 56\)

\(28\ 42\ 55\)

\({ P}_{29}^{55}:\)

\(1\ 33\ 45\)

\(7\ 12\ 49\)

\(2\ 6\ 30\)

\(28\ 32\ 44\)

\(8\ 34\ 46\)

\(11\ 27\ 36\)

\(20\ 24\ 56\)

\(14\ 38\ 53\)

\(10\ 13\ 18\)

\(3\ 35\ 50\)

\(39\ 40\ 54\)

\(4\ 9\ 17\)

\(22\ 23\ 48\)

\(15\ 21\ 42\)

\(19\ 47\ 52\)

\(37\ 51\ 57\)

\(5\ 41\ 43\)

\(16\ 25\ 31\)

(2) \(v=47,\alpha =3,k=23\)

\(\mathcal{B}_0:\)

0 10 19 38

8 14 30 80

20 25 46 84

5 6 18 26

4 43 44 46

 

8 17 28 40

3 12 34 38

0 5 28 32

17 62 72 76

38 44 45 66

 

4 14 28 37

2 4 85 92

11 39 40 44

14 38 41 91

25 29 74 92

 

10 53 75 88

13 20 21 30

5 7 36 78

30 73 83 85

3 15 22 39

 

11 54 61 87

19 57 67 86

1 2 39 57

11 12 15 43

13 37 87 92

 

17 25 43 46

11 17 19 78

3 12 81 85

15 17 41 43

1 3 51 54

\(P_{0}^{17}:\)

\( 1\ 8\ 38 \)

\( 20\ 30\ 57 \)

\( 32\ 63\ 78 \)

\( 28\ 60\ 92 \)

\( 55\ 66\ 87 \)

\( 14\ 22\ 58 \)

\( 46\ 77\ 88 \)

\( 11\ 52\ 82 \)

\( 44\ 59\ 62 \)

\( 19\ 40\ 51 \)

\( 50\ 76\ 81 \)

\( 4\ 25\ 86 \)

\( 2\ 24\ 70 \)

\( 33\ 42\ 72 \)

\( 26\ 43\ 54 \)

\( 7\ 39\ 80 \)

\( 18\ 36\ 90 \)

\( 10\ 67\ 68 \)

\( 61\ 85\ 93 \)

\( 21\ 48\ 73 \)

\( 34\ 84\ 91 \)

\( 3\ 12\ 16 \)

\( 6\ 31\ 89 \)

\( 56\ 65\ 74 \)

\( 5\ 15\ 49 \)

\( 23\ 45\ 79 \)

\( 9\ 13\ 69 \)

\( 27\ 29\ 83 \)

\( 41\ 71\ 75 \)

\( 35\ 37\ 53 \)

\(P_{0}^{85}:\)

\( 1\ 6\ 75 \)

\( 7\ 37\ 81 \)

\( 27\ 45\ 63 \)

\( 2\ 3\ 21 \)

\( 46\ 53\ 59 \)

\( 20\ 25\ 71 \)

\( 17\ 40\ 62 \)

\( 44\ 49\ 82 \)

\( 9\ 73\ 88 \)

\( 10\ 30\ 65 \)

\( 12\ 51\ 76 \)

\( 56\ 68\ 83 \)

\( 14\ 55\ 60 \)

\( 29\ 72\ 89 \)

\( 8\ 52\ 61 \)

\( 24\ 42\ 79 \)

\( 35\ 66\ 92 \)

\( 58\ 87\ 90 \)

\( 23\ 26\ 32 \)

\( 54\ 69\ 86 \)

\( 15\ 36\ 64 \)

\( 22\ 67\ 74 \)

\( 13\ 18\ 78 \)

\( 31\ 34\ 70 \)

\( 43\ 48\ 80 \)

\( 19\ 33\ 91 \)

\( 4\ 39\ 84 \)

\( 28\ 50\ 77 \)

\( 11\ 41\ 57 \)

\( 5\ 16\ 93 \)

\(P_{47}^{17}:\)

\(34\ 49\ 61\)

\(27\ 55\ 68\)

\(9\ 30\ 59\)

\(3\ 7\ 57\)

\(16\ 66\ 79\)

\(25\ 42\ 65\)

\(29\ 71\ 89\)

\(74\ 81\ 91\)

\(1\ 5\ 43\)

\(18\ 63\ 93\)

\(50\ 69\ 83\)

\(75\ 77\ 90\)

\(21\ 72\ 87\)

\(44\ 53\ 70\)

\(13\ 38\ 51\)

\(15\ 20\ 37\)

\(54\ 58\ 60\)

\(11\ 52\ 56\)

\(23\ 36\ 41\)

\(4\ 12\ 32\)

\(26\ 31\ 85\)

\(14\ 39\ 78\)

\(28\ 48\ 76\)

\(19\ 33\ 92\)

\(8\ 45\ 46\)

\(6\ 82\ 88\)

\(22\ 35\ 84\)

\(2\ 24\ 40\)

\(10\ 62\ 86\)

\(67\ 73\ 80\)

\(P_{47}^{85}:\)

\(7\ 27\ 30\)

\(75\ 79\ 92\)

\(22\ 51\ 59\)

\(25\ 60\ 76\)

\(2\ 29\ 65\)

\(24\ 49\ 63\)

\(41\ 66\ 89\)

\(6\ 77\ 81\)

\(9\ 34\ 43\)

\(40\ 53\ 88\)

\(21\ 42\ 61\)

\(1\ 73\ 74\)

\(4\ 68\ 71\)

\(33\ 36\ 37\)

\(56\ 80\ 84\)

\(3\ 70\ 86\)

\(14\ 44\ 90\)

\(52\ 55\ 93\)

\(19\ 28\ 69\)

\(17\ 23\ 87\)

\(10\ 35\ 39\)

\(13\ 82\ 83\)

\(8\ 16\ 18\)

\(45\ 48\ 57\)

\(20\ 46\ 50\)

\(5\ 72\ 78\)

\(12\ 62\ 64\)

\(11\ 32\ 67\)

\(31\ 58\ 91\)

\(15\ 26\ 54\)

(3) \(v=59,\alpha =3,k=29\)

\(\mathcal{B}_0:\)

0 12 18 65

6 8 12 66

64 76 104 107

24 34 52 63

8 36 48 109

 

2 3 50 68

16 28 38 116

4 11 34 102

2 14 16 115

16 58 77 114

 

2 4 12 73

4 56 58 107

26 32 50 83

10 33 38 51

1 6 69 94

 

19 97 110 116

4 19 38 49

15 27 48 110

17 21 38 86

5 12 39 112

 

3 4 21 86

19 42 45 46

4 26 93 111

19 32 44 51

10 41 99 108

 

28 77 91 105

7 11 45 54

15 53 82 107

1 3 27 70

19 59 79 96

 

11 43 51 100

39 41 54 55

23 35 44 51

25 56 67 95

3 6 17 103

 

21 24 101 117

33 49 51 115

5 31 45 67

  

\(P_{0}^{21}:\)

\(1\ 4\ 34 \)

\(5\ 15\ 90 \)

\(6\ 27\ 105 \)

\(3\ 42\ 114 \)

\(18\ 53\ 72 \)

\(8\ 48\ 85 \)

\(35\ 84\ 106 \)

\(16\ 40\ 57 \)

\(24\ 30\ 36 \)

\(14\ 22\ 44 \)

\(52\ 54\ 103 \)

\(10\ 51\ 115 \)

\(25\ 92\ 113 \)

\(32\ 49\ 112 \)

\(64\ 86\ 102 \)

\(11\ 23\ 58 \)

\(50\ 108\ 111 \)

\(12\ 47\ 96 \)

\(56\ 62\ 74 \)

\(2\ 43\ 89 \)

\(29\ 38\ 66 \)

\(17\ 55\ 98 \)

\(60\ 70\ 93 \)

\(13\ 82\ 88 \)

\(26\ 45\ 110 \)

\(9\ 77\ 104 \)

\(67\ 68\ 94 \)

\(78\ 95\ 100 \)

\(19\ 33\ 101 \)

\(7\ 97\ 109 \)

\(39\ 76\ 83 \)

\(46\ 71\ 107 \)

\(31\ 65\ 117 \)

\(20\ 37\ 75 \)

\(28\ 69\ 79 \)

\(41\ 87\ 116 \)

\(63\ 81\ 99 \)

\(61\ 73\ 91 \)

    

\(P_{0}^{73}:\)

\(1\ 78\ 109 \)

\(17\ 44\ 101 \)

\(55\ 106\ 110 \)

\(13\ 36\ 108 \)

\(34\ 82\ 91 \)

\(9\ 51\ 65 \)

\(64\ 90\ 103 \)

\(19\ 37\ 77 \)

\(38\ 62\ 93 \)

\(23\ 27\ 80 \)

\(6\ 48\ 115 \)

\(3\ 11\ 66 \)

\(4\ 43\ 57 \)

\(45\ 71\ 87 \)

\(10\ 25\ 111 \)

\(69\ 72\ 89 \)

\(94\ 97\ 99 \)

\(31\ 35\ 75 \)

\(5\ 7\ 67 \)

\(33\ 42\ 63 \)

\(16\ 26\ 53 \)

\(47\ 50\ 54 \)

\(60\ 113\ 114 \)

\(8\ 49\ 88 \)

\(70\ 96\ 107 \)

\(22\ 83\ 116 \)

\(15\ 52\ 58 \)

\(32\ 104\ 117 \)

\(21\ 39\ 81 \)

\(18\ 30\ 40 \)

\(84\ 86\ 105 \)

\(79\ 95\ 112 \)

\(12\ 28\ 76 \)

\(2\ 24\ 85 \)

\(46\ 100\ 102 \)

\(29\ 41\ 92 \)

\(20\ 61\ 74 \)

\(56\ 68\ 98 \)

    

\(P_{59}^{21}:\)

\(20\ 51\ 71\)

\(5\ 15\ 53\)

\(19\ 45\ 81\)

\(66\ 85\ 95\)

\(2\ 3\ 77\)

\(23\ 87\ 110\)

\(78\ 82\ 105\)

\(25\ 47\ 65\)

\(27\ 69\ 99\)

\(8\ 57\ 83\)

\(35\ 92\ 114\)

\(7\ 41\ 113\)

\(1\ 14\ 109\)

\(18\ 75\ 111\)

\(28\ 49\ 64\)

\(17\ 31\ 70\)

\(29\ 46\ 96\)

\(72\ 107\ 112\)

\(26\ 79\ 103\)

\(40\ 42\ 48\)

\(55\ 90\ 116\)

\(50\ 68\ 100\)

\(33\ 34\ 67\)

\(16\ 37\ 98\)

\(30\ 32\ 44\)

\(24\ 61\ 91\)

\(38\ 104\ 108\)

\(11\ 13\ 62\)

\(39\ 54\ 115\)

\(36\ 58\ 89\)

\(6\ 74\ 93\)

\(84\ 102\ 117\)

\(10\ 43\ 94\)

\(56\ 86\ 88\)

\(9\ 12\ 73\)

\(52\ 76\ 101\)

\(63\ 97\ 106\)

\(4\ 22\ 60\)

    

\(P_{59}^{73}:\)

\(5\ 27\ 106\)

\(41\ 90\ 107\)

\(54\ 87\ 99\)

\(1\ 96\ 98\)

\(10\ 44\ 71\)

\(50\ 52\ 85\)

\(30\ 34\ 40\)

\(2\ 32\ 48\)

\(20\ 72\ 102\)

\(29\ 38\ 114\)

\(3\ 68\ 82\)

\(6\ 53\ 94\)

\(18\ 55\ 63\)

\(24\ 45\ 74\)

\(7\ 35\ 112\)

\(56\ 65\ 110\)

\(4\ 8\ 36\)

\(67\ 70\ 97\)

\(31\ 42\ 60\)

\(9\ 58\ 93\)

\(11\ 23\ 92\)

\(21\ 37\ 62\)

\(22\ 64\ 91\)

\(79\ 89\ 101\)

\(69\ 109\ 111\)

\(13\ 80\ 95\)

\(17\ 39\ 86\)

\(15\ 46\ 47\)

\(66\ 100\ 117\)

\(57\ 105\ 108\)

\(25\ 33\ 104\)

\(19\ 83\ 115\)

\(51\ 61\ 88\)

\(26\ 77\ 113\)

\(16\ 76\ 103\)

\(12\ 49\ 75\)

\(43\ 81\ 84\)

\(28\ 78\ 116\)

    

(4) \(v=71,\alpha =3,k=35\)

\(\mathcal{B}_0:\)

12 38 50 64

7 36 116 120

14 29 46 70

14 53 64 140

16 20 113 128

11 22 38 42

12 13 86 130

4 20 42 46

38 101 126 140

18 25 34 132

0 60 87 102

16 44 64 113

50 58 122 127

36 40 55 136

17 40 72 82

8 13 14 58

44 50 124 125

10 19 115 140

0 23 64 105

1 25 80 132

5 40 82 123

27 58 128 141

35 37 66 112

20 89 122 133

44 45 64 69

25 112 117 120

4 7 19 62

7 14 23 38

24 32 47 75

1 3 5 10

8 29 51 127

9 26 29 67

17 47 51 138

11 22 47 55

43 53 120 131

17 21 59 112

9 56 101 141

11 54 55 67

12 13 97 103

1 3 9 16

24 45 47 133

37 42 121 125

11 45 52 63

5 29 60 117

3 5 21 99

15 67 123 141

    

\(P_{0}^{5}:\)

\(89\ 91\ 121 \)

\(51\ 73\ 107 \)

\(11\ 85\ 119 \)

\(77\ 123\ 133 \)

\(23\ 29\ 127 \)

\(109\ 139\ 141 \)

\(41\ 62\ 115 \)

\(33\ 39\ 70 \)

\(34\ 45\ 65 \)

\(24\ 61\ 99 \)

\(63\ 113\ 128 \)

\(20\ 21\ 93 \)

\(67\ 78\ 87 \)

\(17\ 79\ 98 \)

\(25\ 117\ 136 \)

\(31\ 49\ 74 \)

\(53\ 81\ 88 \)

\(12\ 13\ 40 \)

\(32\ 55\ 112 \)

\(16\ 35\ 140 \)

\(38\ 97\ 100 \)

\(59\ 66\ 103 \)

\(46\ 126\ 137 \)

\(7\ 57\ 132 \)

\(18\ 47\ 64 \)

\(30\ 69\ 138 \)

\(104\ 105\ 122 \)

\(3\ 14\ 96 \)

\(9\ 102\ 134 \)

\(4\ 54\ 124 \)

\(83\ 114\ 118 \)

\(22\ 50\ 80 \)

\(48\ 52\ 125 \)

\(27\ 44\ 86 \)

\(8\ 42\ 111 \)

\(15\ 68\ 92 \)

\(28\ 94\ 101 \)

\(19\ 56\ 106 \)

\(90\ 108\ 129 \)

\(37\ 72\ 130 \)

\(1\ 10\ 58 \)

\(2\ 75\ 82 \)

\(43\ 84\ 110 \)

\(6\ 60\ 95 \)

\(26\ 120\ 131 \)

\(36\ 116\ 135 \)

  

\(P_{0}^{59}:\)

\(1\ 23\ 77 \)

\(91\ 107\ 141 \)

\(15\ 37\ 133 \)

\(75\ 125\ 139 \)

\(25\ 67\ 111 \)

\(31\ 95\ 129 \)

\(51\ 103\ 119 \)

\(27\ 87\ 90 \)

\(12\ 79\ 101 \)

\(57\ 81\ 82 \)

\(43\ 62\ 109 \)

\(19\ 45\ 94 \)

\(49\ 89\ 128 \)

\(47\ 73\ 92 \)

\(9\ 28\ 54 \)

\(4\ 29\ 134 \)

\(3\ 70\ 80 \)

\(32\ 114\ 121 \)

\(100\ 126\ 131 \)

\(20\ 40\ 120 \)

\(10\ 86\ 135 \)

\(2\ 117\ 127 \)

\(44\ 64\ 98 \)

\(35\ 74\ 124 \)

\(30\ 61\ 140 \)

\(17\ 102\ 104 \)

\(6\ 65\ 78 \)

\(96\ 99\ 105 \)

\(5\ 16\ 116 \)

\(56\ 60\ 112 \)

\(7\ 8\ 85 \)

\(33\ 84\ 108 \)

\(46\ 52\ 93 \)

\(97\ 118\ 136 \)

\(55\ 76\ 122 \)

\(53\ 58\ 63 \)

\(14\ 21\ 36 \)

\(39\ 42\ 72 \)

\(41\ 69\ 137 \)

\(22\ 24\ 123 \)

\(11\ 83\ 115 \)

\(48\ 50\ 106 \)

\(34\ 132\ 138 \)

\(18\ 66\ 113 \)

\(26\ 68\ 110 \)

\(13\ 38\ 88 \)

  

\(P_{71}^{5}:\)

\( 9\ 133\ 138\)

\(13\ 31\ 46\)

\(51\ 61\ 96\)

\(104\ 125\ 127\)

\(22\ 60\ 117\)

\(35\ 37\ 92\)

\(39\ 70\ 139\)

\(6\ 69\ 82\)

\(33\ 68\ 115\)

\(18\ 59\ 134\)

\(58\ 101\ 141\)

\(87\ 105\ 137\)

\(93\ 103\ 116\)

\(4\ 17\ 66\)

\(23\ 130\ 135\)

\(11\ 16\ 73\)

\(7\ 21\ 45\)

\(25\ 65\ 126\)

\(12\ 47\ 113\)

\(48\ 90\ 123\)

\(50\ 63\ 131\)

\(3\ 55\ 94\)

\(42\ 49\ 98\)

\(97\ 99\ 111\)

\(67\ 85\ 118\)

\(54\ 74\ 100\)

\(26\ 102\ 124\)

\(62\ 79\ 81\)

\(30\ 56\ 122\)

\(44\ 52\ 132\)

\(14\ 38\ 84\)

\(89\ 106\ 119\)

\(1\ 80\ 109\)

\(10\ 36\ 91\)

\(40\ 110\ 129\)

\(27\ 77\ 112\)

\(41\ 53\ 78\)

\(34\ 86\ 114\)

\(2\ 32\ 140\)

\(29\ 108\ 128\)

\(8\ 24\ 64\)

\(57\ 95\ 121\)

\(83\ 88\ 107\)

\(15\ 19\ 136\)

\(20\ 28\ 43\)

\(72\ 75\ 120\)

  

\(P_{71}^{59}:\)

\( 37\ 77\ 100\)

\(24\ 29\ 129\)

\(15\ 38\ 75\)

\(11\ 81\ 103\)

\(63\ 101\ 119\)

\(1\ 26\ 135\)

\(19\ 25\ 28\)

\(3\ 31\ 91\)

\(89\ 102\ 118\)

\(82\ 97\ 121\)

\(67\ 79\ 120\)

\(47\ 50\ 107\)

\(18\ 33\ 83\)

\(45\ 74\ 84\)

\(14\ 20\ 73\)

\(92\ 109\ 114\)

\(43\ 48\ 115\)

\(80\ 95\ 117\)

\(64\ 87\ 104\)

\(9\ 113\ 136\)

\(27\ 36\ 123\)

\(46\ 105\ 131\)

\(61\ 110\ 111\)

\(2\ 35\ 49\)

\(21\ 125\ 128\)

\(57\ 58\ 137\)

\(5\ 94\ 122\)

\(66\ 72\ 116\)

\(16\ 51\ 132\)

\(98\ 99\ 140\)

\(6\ 8\ 139\)

\(22\ 23\ 39\)

\(4\ 44\ 90\)

\(62\ 65\ 108\)

\(70\ 106\ 126\)

\(32\ 42\ 134\)

\(56\ 68\ 85\)

\(13\ 17\ 76\)

\(34\ 60\ 78\)

\(12\ 133\ 141\)

\(96\ 112\ 127\)

\(10\ 86\ 93\)

\(7\ 53\ 55\)

\(30\ 52\ 138\)

\(40\ 54\ 124\)

\(41\ 69\ 88\)

  

(5) \(v=83,\alpha =3,k=41\)

\(\mathcal{B}_0:\)

2 40 72 139

36 66 85 156

2 10 21 156

42 64 79 80

8 20 27 74

 

3 8 38 46

31 44 60 142

39 52 56 82

35 46 54 58

15 40 44 100

 

4 8 75 114

9 26 48 70

38 42 132 161

16 62 67 76

66 86 111 158

 

0 19 44 148

9 42 60 76

4 10 68 124

6 23 136 164

2 58 74 154

 

12 16 44 61

9 52 64 101

0 23 32 41

3 13 68 156

6 20 23 41

 

21 54 60 81

0 6 13 41

7 18 79 136

23 54 112 127

21 67 132 148

 

6 8 21 111

8 36 79 153

6 19 138 143

1 5 55 56

6 27 49 73

 

5 17 21 32

21 45 56 61

31 55 147 164

23 101 111 160

1 32 45 69

 

29 83 131 152

15 27 28 65

41 46 63 151

15 23 58 147

9 25 71 80

 

57 62 69 75

18 39 59 65

42 69 75 163

1 17 34 35

34 81 133 145

 

6 13 37 153

13 19 119 145

3 7 13 51

11 55 56 151

 

\(P_{0}^{63}:\)

\(1\ 23\ 73\)

\(21\ 93\ 109\)

\(9\ 33\ 113\)

\(5\ 75\ 87\)

\(111\ 119\ 132\)

\(81\ 101\ 151\)

\(11\ 35\ 147\)

\(13\ 25\ 133\)

\(39\ 153\ 163\)

\(3\ 19\ 159\)

\(30\ 131\ 157\)

\(29\ 103\ 120\)

\(31\ 57\ 128\)

\(55\ 121\ 156\)

\(43\ 59\ 122\)

\(40\ 51\ 115\)

\(17\ 26\ 165\)

\(4\ 65\ 108\)

\(36\ 69\ 88\)

\(27\ 60\ 124\)

\(44\ 78\ 123\)

\(14\ 37\ 64\)

\(2\ 41\ 136\)

\(22\ 77\ 98\)

\(96\ 138\ 161\)

\(74\ 99\ 117\)

\(7\ 32\ 62\)

\(42\ 82\ 127\)

\(46\ 76\ 95\)

\(49\ 66\ 100\)

\(6\ 58\ 61\)

\(140\ 152\ 155\)

\(20\ 24\ 70\)

\(54\ 126\ 158\)

\(68\ 90\ 145\)

\(52\ 56\ 86\)

\(16\ 50\ 79\)

\(72\ 107\ 154\)

\(12\ 18\ 125\)

\(38\ 71\ 80\)

\(94\ 118\ 149\)

\(8\ 106\ 112\)

\(10\ 137\ 160\)

\(134\ 135\ 144\)

\(53\ 85\ 148\)

\(15\ 104\ 150\)

\(97\ 141\ 162\)

\(45\ 143\ 164\)

\(89\ 105\ 114\)

\(28\ 91\ 142\)

\(34\ 48\ 84\)

\(47\ 92\ 110\)

\(67\ 129\ 130\)

\(102\ 116\ 139\)

\(P_{0}^{133}:\)

\(1\ 82\ 112\)

\(6\ 30\ 108\)

\(58\ 89\ 134\)

\(14\ 26\ 93\)

\(4\ 52\ 161\)

\(98\ 100\ 126\)

\(32\ 103\ 157\)

\(7\ 42\ 158\)

\(24\ 95\ 96\)

\(20\ 104\ 135\)

\(17\ 84\ 118\)

\(22\ 97\ 125\)

\(107\ 120\ 162\)

\(46\ 48\ 90\)

\(8\ 19\ 154\)

\(12\ 68\ 111\)

\(2\ 74\ 151\)

\(27\ 86\ 132\)

\(81\ 140\ 160\)

\(70\ 94\ 165\)

\(64\ 85\ 142\)

\(9\ 114\ 131\)

\(11\ 59\ 102\)

\(34\ 55\ 124\)

\(101\ 130\ 148\)

\(44\ 109\ 146\)

\(79\ 138\ 150\)

\(37\ 92\ 136\)

\(69\ 78\ 106\)

\(10\ 15\ 88\)

\(49\ 54\ 156\)

\(38\ 144\ 159\)

\(75\ 116\ 153\)

\(23\ 39\ 141\)

\(36\ 63\ 164\)

\(28\ 71\ 145\)

\(77\ 122\ 139\)

\(33\ 127\ 155\)

\(16\ 123\ 147\)

\(61\ 80\ 99\)

\(3\ 35\ 137\)

\(18\ 60\ 149\)

\(40\ 87\ 128\)

\(47\ 56\ 66\)

\(13\ 57\ 65\)

\(62\ 76\ 105\)

\(5\ 45\ 117\)

\(113\ 119\ 129\)

\(41\ 51\ 53\)

\(29\ 31\ 115\)

\(21\ 73\ 163\)

\(43\ 72\ 91\)

\(110\ 121\ 152\)

\(25\ 67\ 143\)

\(P_{83}^{63}:\)

\( 81\ 121\ 122\)

\(9\ 54\ 151\)

\(25\ 33\ 138\)

\(17\ 18\ 111\)

\(49\ 68\ 131\)

\(119\ 147\ 157\)

\(11\ 125\ 161\)

\(51\ 92\ 113\)

\(59\ 61\ 134\)

\(41\ 64\ 93\)

\(75\ 86\ 112\)

\(23\ 78\ 108\)

\(7\ 28\ 40\)

\(95\ 152\ 155\)

\(106\ 127\ 139\)

\(27\ 129\ 132\)

\(14\ 69\ 103\)

\(5\ 84\ 87\)

\(57\ 117\ 123\)

\(1\ 71\ 162\)

\(91\ 130\ 153\)

\(3\ 39\ 58\)

\(42\ 53\ 109\)

\(32\ 98\ 99\)

\(31\ 76\ 165\)

\(29\ 35\ 163\)

\(2\ 50\ 65\)

\(37\ 96\ 107\)

\(21\ 34\ 52\)

\(77\ 136\ 149\)

\(66\ 80\ 101\)

\(97\ 100\ 124\)

\(44\ 82\ 102\)

\(94\ 128\ 148\)

\(13\ 48\ 154\)

\(46\ 116\ 126\)

\(6\ 62\ 74\)

\(20\ 88\ 160\)

\(16\ 26\ 140\)

\(72\ 142\ 144\)

\(56\ 156\ 164\)

\(12\ 133\ 158\)

\(15\ 90\ 115\)

\(8\ 70\ 150\)

\(22\ 24\ 79\)

\(36\ 55\ 114\)

\(4\ 85\ 159\)

\(10\ 47\ 141\)

\(43\ 89\ 110\)

\(67\ 73\ 120\)

\(30\ 45\ 105\)

\(104\ 118\ 145\)

\(19\ 135\ 143\)

\(38\ 60\ 137\)

\(P_{83}^{133}:\)

\( 33\ 75\ 142\)

\(3\ 11\ 21\)

\(2\ 59\ 91\)

\(4\ 102\ 123\)

\(87\ 89\ 140\)

\(92\ 95\ 131\)

\(17\ 72\ 150\)

\(23\ 28\ 155\)

\(38\ 113\ 143\)

\(55\ 56\ 147\)

\(1\ 110\ 161\)

\(13\ 74\ 153\)

\(27\ 81\ 100\)

\(51\ 119\ 120\)

\(65\ 68\ 124\)

\(19\ 111\ 127\)

\(69\ 135\ 164\)

\(9\ 14\ 149\)

\(29\ 77\ 96\)

\(7\ 39\ 136\)

\(47\ 107\ 151\)

\(15\ 37\ 82\)

\(61\ 62\ 137\)

\(109\ 118\ 148\)

\(25\ 36\ 105\)

\(115\ 139\ 146\)

\(10\ 18\ 63\)

\(126\ 144\ 165\)

\(24\ 93\ 157\)

\(5\ 49\ 52\)

\(86\ 121\ 158\)

\(31\ 125\ 156\)

\(22\ 97\ 159\)

\(54\ 76\ 141\)

\(73\ 162\ 163\)

\(41\ 134\ 145\)

\(6\ 16\ 152\)

\(43\ 101\ 160\)

\(57\ 66\ 85\)

\(84\ 103\ 114\)

\(58\ 70\ 88\)

\(67\ 129\ 138\)

\(46\ 79\ 117\)

\(48\ 53\ 104\)

\(12\ 42\ 44\)

\(35\ 60\ 99\)

\(80\ 122\ 130\)

\(90\ 116\ 154\)

\(40\ 45\ 71\)

\(32\ 94\ 112\)

\(64\ 98\ 132\)

\(8\ 20\ 78\)

\(26\ 34\ 108\)

\(30\ 106\ 128\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Y., Zheng, H. & Zhou, J. Existence of frame-derived H-designs. Des. Codes Cryptogr. 87, 1415–1431 (2019). https://doi.org/10.1007/s10623-018-0536-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-018-0536-8

Keywords

Mathematics Subject Classification

Navigation