Skip to main content
Log in

Group invariant weighing matrices

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We investigate the existence problem of group invariant matrices using algebraic approaches. We extend the usual concept of multipliers to group rings with cyclotomic integers as coefficients. This concept is combined with the field descent method and rational idempotents to develop new non-existence results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ang M.H., Arasu K.T., Lun Ma S., Strassler Y.: Study of proper circulant weighing matrices with weight 9. Discret. Math. 308(13), 2802–2809 (2008).

    Article  MathSciNet  Google Scholar 

  2. Arasu K.T., Dillon J.F.: Perfect ternary arrays. In: Difference sets, sequences and their correlation properties, pp. 1–15. Springer, Dordrecht (1999).

    Google Scholar 

  3. Arasu K., Hollon J.R.: Group developed weighing matrices. Australas. J. Comb. 55, 205–233 (2013).

    MathSciNet  MATH  Google Scholar 

  4. Arasu K.T., Ma S.L.: Some new results on circulant weighing matrices. J. Algebr. Comb. 14(2), 91–101 (2001).

    Article  MathSciNet  Google Scholar 

  5. Arasu K.T., Ma S.L.: Nonexistence of CW(110,100). Des. Codes Cryptogr. 62(3), 273–278 (2012).

    Article  MathSciNet  Google Scholar 

  6. Arasu K.T., Nabavi A.: Nonexistence of CW(154,36) and CW (170,64). Discret. Math. 311(8–9), 769–779 (2011).

    Article  MathSciNet  Google Scholar 

  7. Arasu K.T., Seberry J.: Circulant weighing designs. J. Comb. Des. 4(6), 439–447 (1996).

    Article  MathSciNet  Google Scholar 

  8. Arasu K.T., Leung K.H., Ma S.L., Nabavi A., Ray-Chaudhuri D.K.: Circulant weighing matrices of weight \(2^{2t}\). Des. Codes Cryptogr. 41(1), 111–123 (2006).

    Article  MathSciNet  Google Scholar 

  9. Arasu K.T., Leung K.H., Ma S.L., Nabavi A., Ray-Chaudhuri D.K.: Determination of all possible orders of weight 16 circulant weighing matrices. Finite Fields Appl. 12(4), 498–538 (2006).

    Article  MathSciNet  Google Scholar 

  10. Arasu K.T., Bayes K., Nabavi A.: Nonexistence of two circulant weighing matrices of weight \(81\). Trans. Comb. 4(3), 43–52 (2015).

    MathSciNet  Google Scholar 

  11. Artacho F.J.A., Campoy R., Kotsireas I., Tam M.K.: A feasibility approach for constructing combinatorial designs of circulant type. arXiv preprint arXiv:1711.02502 (2017).

  12. Beth T., Jungnickel D., Lenz H.: Design theory, vol. I, 2nd ed. Volume 69 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1999).

  13. Borevich A.I., Shafarevich I.R.: Number Theory. Translated from the Russian by Newcomb Greenleaf. Pure and Applied Mathematics. Academic Press, New York-London (1966).

    MATH  Google Scholar 

  14. Craigen R.: The structure of weighing matrices having large weights. Des. Codes Cryptogr. 5(3), 199–216 (1995).

    Article  MathSciNet  Google Scholar 

  15. Craigen R., Kharaghani H.: Hadamard matrices from weighing matrices via signed groups. Des. Codes Cryptogr. 12(1), 49–58 (1997).

    Article  MathSciNet  Google Scholar 

  16. de Launey W.: On the nonexistence of generalized weighing matrices. Ars Comb. 21, 117–132 (1984).

    MATH  Google Scholar 

  17. Dokovic D., Kotsireas I.: There is no circulant weighing matrix of order 60 and weight 36. http://arxiv.org/abs/1406.1399.

  18. Eades P., Hain R.M.: On circulant weighing matrices. Ars Comb. 2, 265–284 (1976).

    MathSciNet  MATH  Google Scholar 

  19. Epstein. The classification of circulant weighing matrices of weight \(16\) and odd order. Diploma Thesis. Bar-Ilan University (1998).

  20. Geramita A.V., Wallis J.S.: Orthogonal designs: III. Weighing matrices. Utilitas Math. 6, 209–236 (1974).

    MathSciNet  MATH  Google Scholar 

  21. Gorenstein D.: Finite Groups, 2nd edn. Chelsea Publishing Co., New York (1980).

    MATH  Google Scholar 

  22. Gysin M., Seberry J.: On the weighing matrices of order \(4n\) and weight \(4n-2\) and \(2n-1\). Australas. J. Combin. 12, 157–174 (1995).

    MathSciNet  MATH  Google Scholar 

  23. Ireland K., Rosen M.: A Classical Introduction to Modern Number Theory of Graduate Texts in Mathematics, second edn. Springer, New York (1990).

    Book  Google Scholar 

  24. Koukouvinos C., Seberry J.: Weighing matrices and their applications. J. Stat. Plann. Inference 62(1), 91–101 (1997).

    Article  MathSciNet  Google Scholar 

  25. Lam T.Y., Leung K.H.: On vanishing sums of roots of unity. J. Algebra 224(1), 91–109 (2000).

    Article  MathSciNet  Google Scholar 

  26. Leung K.H., Ma S.L.: Proper circulant weighing matrices of weight \(25\). Preprint (2011).

  27. Leung K.H., Ma S.L.: Proper circulant weighing matrices of weight \(p^2\). Preprint.

  28. Leung K.H., Schmidt B.: The field descent method. Des. Codes Cryptogr. 36(2), 171–188 (2005).

    Article  MathSciNet  Google Scholar 

  29. Ma S.L.: Polynomial addition sets. Ph.D. thesis, University of Hong Kong (1985).

  30. McFarland R.L.: On multipliers of abelian difference sets. ProQuest LLC, Ann Arbor. Thesis (Ph.D.)—The Ohio State University (1970).

  31. Mullin R.C.: A note on balanced weighing matrices. In: Combinatorial mathematics, III (Proceedings of the Third Australian Conference, Univ. Queensland, St. Lucia, 1974), pp. 28–41. Lecture Notes in Mathematics, vol. 452. Springer, Berlin (1975).

  32. Ohmori H.: Classification of weighing matrices of order \(13\) and weight \(9\). Discret. Math. 116(1–3), 55–78 (1993).

    Article  MathSciNet  Google Scholar 

  33. Schmidt B.: Cyclotomic integers and finite geometry. J. Am. Math. Soc. 12(4), 929–952 (1999).

    Article  MathSciNet  Google Scholar 

  34. Schmidt B.: Characters and cyclotomic fields in finite geometry, vol. 1797. In: Lecture Notes in Mathematics. Springer, Berlin (2002).

    Chapter  Google Scholar 

  35. Schmidt B., Smith K.W.: Circulant weighing matrices whose order and weight are products of powers of 2 and 3. J. Combin. Theory Ser. A 120(1), 275–287 (2013).

    Article  MathSciNet  Google Scholar 

  36. Seberry J., Yamada M.: Hadamard matrices, sequences, and block designs. In: Contemporary design theory, Wiley-Intersci. Ser. Discret. Math. Optim., pp. 431–560. Wiley, New York (1992).

  37. Stanton R.G., Mullin R.C.: On the nonexistence of a class of circulant balanced weighting matrices. SIAM J. Appl. Math. 30(1), 98–102 (1976).

    Article  MathSciNet  Google Scholar 

  38. Strassler Y.: The classification of circulant weighing matrices of weight \(9\). Diploma Thesis, Bar-Ilan University (1998).

  39. Tan M.M.: Relative difference sets and circulant weighing matrices. Ph.D. thesis, Nanyang Technological University (2014).

  40. Turyn R.J.: Character sums and difference sets. Pac. J. Math. 15, 319–346 (1965).

    Article  MathSciNet  Google Scholar 

  41. Wallis J.S., Whiteman A.L.: Some results on weighing matrices. Bull. Aust. Math. Soc. 12(3), 433–447 (1975).

    Article  MathSciNet  Google Scholar 

  42. Yorgov V.: On the existance of certain circulant weighing matrices. J. Combin. Math. Combin. Comput. 86, 73–85 (2013).

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to my advisor, Bernhard Schmidt for his helpful comments and discussions. Furthermore, I would like to thank the anonymous referees for their useful suggestions. I would also like to thank Artacho et al. [11, Remark 4.4 and 4.5] for pointing out the errors in the updated Strassler’s table (Table 3) in an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Ming Tan.

Additional information

Communicated by K. T. Arasu.

Appendix: Updated Strassler’s table

Appendix: Updated Strassler’s table

Here, we provide the most updated version of Strassler’s table, see Table 3. We incorporated all latest results known so far, see [5, 6, 10, 26, 27, 35, 42]. Previously open cases that we have settled in this paper are labeled with “N”. Those are CW(vn) for the following pairs of (vn): (60, 36),  (120, 36),  (138, 36),  (155, 36),  (184, 36),  (128, 49),  (112, 64),  (147, 64),  (184, 64),  (105, 81),  (117, 81),  (184, 81),  (133, 100),  (154, 100),  (158, 100),  (160, 100),  (176, 100),  (190, 100),  and (192, 100). In the table, we also indicate which cases of CW(vn) with \(n > 25\) that can be proved to be non-existent by the results presented in this paper. All CW(vn)s with \(n \le 25\) have been completely classified, see [1, 8, 9, 18, 19, 38]. We use the following labels: (A) for Theorem 4.2, (B) for Theorem 4.6, (C) for Theorem 4.10, (D) for Theorem 4.14, (E) for Theorem 4.16, (F) for Theorem 4.21, (G) for Theorem 4.3 (H) for Theorem 4.23, (I) for Theorem 4.24, (J) for Theorem 4.25.

Table 3 Updated Strassler’s table of circulant weighing matrices

In addition, we solved some open cases in the table of group invariant weighing matrices of [3], where the group is abelian but non-cyclic. Table 4 summarizes our results. Note that an abelian group \(G = C_{v_1} \times C_{v_2} \times \ldots \times C_{v_r}\) is represented by \([v_1, v_2, \ldots , v_r]\) in the table.

Table 4 Non-existence of G-invariant weighing matrices W(|G|, n)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, M.M. Group invariant weighing matrices. Des. Codes Cryptogr. 86, 2677–2702 (2018). https://doi.org/10.1007/s10623-018-0466-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-018-0466-5

Keywords

Mathematics Subject Classification

Navigation