Skip to main content
Log in

Quantum encryption and generalized Shannon impossibility

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The famous Shannon impossibility result says that any encryption scheme with perfect secrecy requires a secret key at least as long as the message. In this paper we provide its quantum analogue with imperfect secrecy and imperfect correctness. We also give a systematic study of information-theoretically secure quantum encryption with two secrecy definitions. We show that the weaker one implies the stronger but with a security loss in d, where d is the dimension of the encrypted quantum system. This is good enough if the target secrecy error is of \(o(d^{-1})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that the righthand side of Eq. (41) in [5] should be \((1-\epsilon )^2\) and hence there should be an additional factor of 2 in front of the term \(\log (1-\epsilon )\) in the lower bound.

References

  1. Ambainis A., Mosca M., Tapp A., Wolf R.D.: Private quantum channels. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pp. 547–553 (2000).

  2. Ambainis A., Smith A.: Small pseudo-random families of matrices: derandomizing approximate quantum encryption. In: Proceedings of RANDOM, Series. Lecture Notes in Computer Science, pp. 249–260. Springer, Berlin (2004).

  3. Boykin P.O., Roychowdhury V.: Optimal encryption of quantum bits. Phys. Rev. A 67, 042317 (2003).

    Article  Google Scholar 

  4. Desrosiers S.P.: Entropic security in quantum cryptography. Quant. Inf. Process. 8(4), 331–345 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  5. Desrosiers S.P., Dupuis F.: Quantum entropic security and approximate quantum encryption. IEEE Trans. Inf. Theory 56(7), 3455–3464 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  6. Dickinson P.A., Nayak A.: Approximate randomization of quantum states with fewer bits of key. AIP Conference Proceedings 864(1), 18–36 (2006).

    Article  MATH  Google Scholar 

  7. DiVincenzo D.P., Hayden P., Terhal B.M.: Hiding quantum data. Found. Phys. 33(11), 1629–1647 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  8. Dodis Y.: Shannon impossibility, revisited. In: A Smith (ed.) Information Theoretic Security: 6th International Conference, ICITS, Montreal, QC, Canada, August 15–17, pp. 100–110, 2012. Springer, Berlin (2012).

  9. Dodis Y., Smith A.: Entropic security and the encryption of high entropy messages. In: Proceedings of the Second International Conference on Theory of Cryptography, Series. TCC’05, pp. 556–577. Springer, Berlin (2005).

  10. Fuchs C.A., van de Graaf J.: Cryptographic distinguishability measures for quantum-mechanical states. IEEE Trans. Inf. Theory 45(4), 1216–1227 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldwasser S., Micali S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  12. Hayden P., Leung D., Shor P.W., Winter A.: Randomizing quantum states: constructions and applications. Commun. Math. Phys. 250(2), 371–391 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  13. Hughston L.P., Jozsa R., Wootters W.K.: A complete classification of quantum ensembles having a given density matrix. Phys. Lett. A 183(1), 14–18 (1993).

    Article  MathSciNet  Google Scholar 

  14. Iwamoto M., Ohta K.: Security notions for information theoretically secure encryptions. In: 2011 IEEE International Symposium on Information Theory Proceedings, pp. 1777–1781 (2011).

  15. Iwamoto M., Ohta K., Shikata J.: Security formalizations and their relationships for encryption and key agreement in information-theoretic cryptography. IEEE Trans. Inf. Theory 64(1), 654–685 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  16. Jain R.: Resource requirements of private quantum channels and consequences for oblivious remote state preparation. J. Cryptol. 25(1), 1–13 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  17. Konig R., Renner R., Schaffner C.: The operational meaning of min- and max-entropy. IEEE Trans. Inf. Theory 55(9), 4337–4347 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  18. Lai C.-Y., Chung K.-M.: On statistically-secure quantum homomorphic encryption. Quant. Inf. Comput. 18(9&10), 0785–0794 (2018).

    MathSciNet  Google Scholar 

  19. Nagaj D., Kerenidis I.: On the optimality of quantum encryption schemes. J. Math. Phys. 47(9), 092102 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  20. Nayak A., Sen P.: Invertible quantum operations and perfect encryption of quantum states. Quant. Inf. Comput. 7(1), 103–110 (2007).

    MATH  Google Scholar 

  21. Ouyang Y., Tan S.-H., Fitzsimons J.F.: Quantum homomorphic encryption from quantum codes. Phys. Rev. A 98, 042334 (2018).

    Article  Google Scholar 

  22. Russell A., Wang H.: How to fool an unbounded adversary with a short key. IEEE Trans. Inf. Theory 52(3), 1130–1140 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  23. Shannon C.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656–719 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  24. Uhlmann A.: The Transition Probability in the state space of a *-algebra. Rep. Math. Phys. 9, 273–279 (1976).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to anonymous referees for their constructive comments on this manuscript. CYL was was financially supported from the Young Scholar Fellowship Program by Ministry of Science and Technology (MOST) in Taiwan, under Grant MOST107-2636-E-009-005. KMC was partially supported by 2016 Academia Sinica Career Development Award under Grant No. 23-17 and the Ministry of Science and Technology, Taiwan under Grant No. MOST 103-2221-E-001-022-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Yi Lai.

Additional information

Communicated by A. Winterhof.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, CY., Chung, KM. Quantum encryption and generalized Shannon impossibility. Des. Codes Cryptogr. 87, 1961–1972 (2019). https://doi.org/10.1007/s10623-018-00597-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-018-00597-3

Keywords

Mathematics Subject Classification

Navigation