Skip to main content
Log in

Miklós–Manickam–Singhi conjectures on partial geometries

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

A Correction to this article was published on 05 February 2019

This article has been updated

Abstract

In this paper we give a proof of the Miklós–Manickam–Singhi (MMS) conjecture for some partial geometries. Specifically, we give a condition on partial geometries which implies that the MMS conjecture holds. Further, several specific partial geometries that are counterexamples to the conjecture are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 05 February 2019

    The original version of this article unfortunately contained a mistake. The authors incorrectly quoted Manickam-Mikl?s-Singhi (MMS) conjecture as ?Mikl?s?Manickam?Singhi?. The correct term for the conjecture is Manickam?Mikl?s?Singhi.

  • 05 February 2019

    The original version of this article unfortunately contained a mistake. The authors incorrectly quoted Manickam-Mikl��s-Singhi (MMS) conjecture as ���Mikl��s���Manickam���Singhi���. The correct term for the conjecture is Manickam���Mikl��s���Singhi.

References

  1. Alon N., Huang H., Sudakov B.: Nonnegative \(k\)-sums, fractional covers, and probability of small deviations. J. Comb. Theory Ser. B 102(3), 784–796 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  2. Bier T.: A distribution invariant for association schemes and strongly regular graphs. Linear Algebra Appl. 57, 105–113 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  3. Bier T., Delsarte P.: Some bounds for the distribution numbers of an association scheme. Eur. J. Comb. 9(1), 1–5 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  4. Brouwer A.E., Cohen A.M., Neumaier A.: Distance-Regular Graphs, vol. 18. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer, Berlin (1989).

  5. Cameron P.J., van Lint J.H.: On the partial geometry \({\rm pg}(6,\,6,\,2)\). J. Comb. Theory Ser. A 32(2), 252–255 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  6. Chowdhury A., Sarkis G., Shahriari S.: The Manickam-Miklós-Singhi conjectures for sets and vector spaces. J. Comb. Theory Ser. A 128, 84–103 (2014).

    Article  MATH  Google Scholar 

  7. Colbourn C.J., Dinitz J.H.: Handbook of Combinatorial Designs, 2nd edn. Chapman & Hall/CRC, Boca Raton, FL (2007).

    MATH  Google Scholar 

  8. De Clerck F., Van Maldeghem H.: Some classes of rank 2 geometries, Chap. 2. In: Buekenhout F. (ed.) Handbook of Incidence Geometry, pp. 434–471. Elsevier, North Holland (1995).

    Google Scholar 

  9. De Clerck F.: Partial and semipartial geometries: an update. Discret. Math. 267(1–3), 75–86 (2003). Combinatorics 2000 (Gaeta).

    Article  MathSciNet  MATH  Google Scholar 

  10. De Clerck F., Delanote M., Hamilton N., Mathon R.: Perp-systems and partial geometries. Adv. Geom. 2(1), 1–12 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  11. Doyen J., Wilson R.M.: Embeddings of Steiner triple systems. Discret. Math. 5, 229–239 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  12. Erdős P., Ko C., Rado R.: Intersection theorems for systems of finite sets. Q. J. Math. Oxford Ser. 2(12), 313–320 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  13. Godsil C., Meagher K.: Erdős-Ko-Rado Theorems: Algebraic Approaches. Cambridge Studies in Advanced Mathematics, vol. 149. Cambridge University Press, Cambridge (2016).

  14. Haemers W.: A new partial geometry constructed from the Hoffman-Singleton graph. Finite Geom. Designs 49, 119–127 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang H., Sudakov B.: The minimum number of nonnegative edges in hypergraphs. Electron. J. Comb. (2014). arXiv:1309.2549

  16. Jungnickel D., Tonchev V.D.: The number of designs with geometric parameters grows exponentially. Des. Codes Cryptogr. 55(2–3), 131–140 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaski P., Östergård P.R.J., Topalova S., Zlatarski R.: Steiner triple systems of order 19 and 21 with subsystems of order 7. Discret. Math. 308(13), 2732–2741 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  18. MacNeish H.F.: Euler squares. Ann. Math. (2) 23(3), 221–227 (1922).

    Article  MathSciNet  MATH  Google Scholar 

  19. Manickam N., Miklós D.: On the number of nonnegative partial sums of a nonnegative sum. In: Combinatorics (Eger, 1987) Colloq. Math. Soc. János Bolyai, vol. 52, pp. 385–392. North-Holland, Amsterdam (1988)

  20. Manickam N., Singhi N.M.: First distribution invariants and EKR theorems. J. Comb. Theory Ser. A 48(1), 91–103 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  21. Pokrovskiy A.: A linear bound on the Manickam-Miklós-Singhi conjecture. J. Comb. Theory Ser. A 133, 280–306 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  22. van Lint J.H., Schrijver A.: Construction of strongly regular graphs, two-weight codes and partial geometries by finite fields. Combinatorica 1(1), 63–73 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  23. Witt E.: Die 5-fach transitiven Gruppen von Mathieu. Abh. Math. Sem. Univ. Hamburg 12(1), 256–264 (1937).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Klaus Metsch for pointing out the construction by Jungnickel and Tonchev used in Lemma 4.5. The authors would also like to thank Ameera Chowdhury for discussing MMS conjectures with them and providing various preprints of her work. The authors would like to thank John Bamberg for his suggestion to include a discussion of all known partial geometries with \(\alpha =2\). The authors would like to thank the referees for their very helpful and constructive comments on the presentation of the results. Research supported in part by an NSERC Discovery Research Grant, Application No.: RGPIN-341214-2013. The first author acknowledges support from a PIMS Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinand Ihringer.

Additional information

Communicated by K. Metsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ihringer, F., Meagher, K. Miklós–Manickam–Singhi conjectures on partial geometries. Des. Codes Cryptogr. 86, 1311–1327 (2018). https://doi.org/10.1007/s10623-017-0397-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-017-0397-6

Keywords

Mathematics Subject Classification

Navigation