Advertisement

Designs, Codes and Cryptography

, Volume 80, Issue 2, pp 379–393 | Cite as

Codes over \(F_{4}+vF_4\) and some DNA applications

  • Aysegul Bayram
  • Elif Segah Oztas
  • Irfan SiapEmail author
Article

Abstract

In this work, we study the structure of linear, constacyclic and cyclic codes over the ring \(R=F_{4}[v]/(v^{2}-v)\) and establish relations to codes over \( F_{4}\) by defining a Gray map between R and \(F_{4}^{2}\) where \(F_4\) is the field with 4 elements. Constacyclic codes over R are shown to be principal ideals. Further, we study skew constacyclic codes over R. The structure of all skew constacyclic codes is completely determined. Furthermore, we introduce reversible codes which provide a rich source for DNA codes. We conclude the paper by obtaining some DNA codes over R that attain the Griesmer bound.

Keywords

Non-chain rings Linear codes Constacyclic codes  Skew codes DNA codes 

Mathematics Subject Classification

94B05 94B15 

Notes

Acknowledgments

The authors wish to express sincere thanks to the anonymous referees who gave many helpful comments and suggestions that greatly improved the presentation of the paper. This paper is presented in The 4th International Congress on Mathematical Software 2014 (ICMS 2014) and partially published in the proceedings [5].

References

  1. 1.
    Abualrub T., Aydin N., Seneviratne P.: Theta-cyclic codes cver \(F_2 + vF_2\). Aust. J. Comb. 54, 115–126 (2012).Google Scholar
  2. 2.
    Adleman L.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994).Google Scholar
  3. 3.
    Bayram A., Siap I.: Structure of codes over the ring \(Z_{3}[v]/\langle v^{3}-v\rangle \). Appl. Algebra Eng. Commun. Comput. 24, 369–386 (2013).Google Scholar
  4. 4.
    Bayram A., Siap I.: Cyclic and constacyclic codes over a non-chain ring. J. Algebra Comb. Discret. Struct. Appl. 1, 1–13 (2014).Google Scholar
  5. 5.
    Bayram A., Oztas E.S., Siap I.: Codes over a non chain ring with some applications. Lecture Notes in Computer Science, vol. 8592, pp. 106–110 (2014).Google Scholar
  6. 6.
    Boucher D., Geiselmann W., Ulmer F.: Skew cyclic codes. Appl. Algebr. Eng. Commun. 18, 379–389 (2007)Google Scholar
  7. 7.
    Boucher D., Sole P., Ulmer F.: Skew constacyclic codes over galois rings. Adv. Math. Commun. 2, 273–292 (2008).Google Scholar
  8. 8.
    Gursoy F., Siap I., Yildiz B.: Construction of skew cylic codes over \(F_{q} + vF_{q}\). Adv. Math. Commun. 8, 313–322 (2014).Google Scholar
  9. 9.
    Hammons A.R., Kumar Jr. P.V., Calderbank J.A., Sloane N.J.A., Sole P.: The \(Z_4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inf. Theory 40, 301–319 (1994).Google Scholar
  10. 10.
    Horimoto H., Shiromoto K.: MDS codes over finite quasi-Frobenius rings, preprint.Google Scholar
  11. 11.
    Jitman S., Ling S., Udomkavanich P.: Skew constacyclic codes over finite chain rings. Adv. Math. Commun. 6, 39–63 (2012).Google Scholar
  12. 12.
    Marathe A., Condon A.N., Corn R.M.: On combinatorial DNA word design. J. Comput. Biol. 8, 201–219 (2001).Google Scholar
  13. 13.
    Massey J.L.: Reversible codes. Inf. Control 7, 369–380 (1964).Google Scholar
  14. 14.
    Oztas E.S., Siap I.: Lifted polynomials over \(F_{16}\) and their applications to DNA codes. Filomat 27, 459–466 (2013).Google Scholar
  15. 15.
    Shiromoto K., Storme L.: A Griesmer bound for linear codes over finite quasi-Frobenius rings. Discret. Appl. Math. 128, 263274 (2003).Google Scholar
  16. 16.
    Siap I., Abualrub T., Aydin N., Seneviratne P.: Skew cyclic codes of arbitrary length. Int. J. Inf. Coding Theory 2, 10–20 (2011).Google Scholar
  17. 17.
    Siap I., Abualrub T., Ghrayeb A.: Cyclic DNA codes over the ring \(F_2[u]/(u^2-1)\) based on the deletion distance. J. Franklin Ins. 346, 731–740 (2006).Google Scholar
  18. 18.
    Abualrub T., Ghrayeb A., Zeng X.N.: Consruction of cyclic codes over \(F_4\) for DNA computing. J. Franklin Ins. 343, 448–457 (2006).Google Scholar
  19. 19.
    Xu X.Q., Zhu S.X.: Skew cyclic codes over the ring \(F_4+vF_4\). J. Hefei Univ. Technol. Nat. Sci. 34, 1429–1432 (2011).Google Scholar
  20. 20.
    Yamamoto M., Kashiwamura S., Ohuchi A.: DNA memory with \(16.8\)M addresses. Lecture Notes in Computer Science, DNA Computing, vol. 4868, pp. 99–108 (2008).Google Scholar
  21. 21.
    Yildiz B., Karadeniz S.: Linear codes over \(F_{2} + uF_{2} +vF_{2} + uvF_{2}\). Des. Codes Cryptogr. 54, 61–81 (2010).Google Scholar
  22. 22.
    Yildiz B., Siap I.: Cyclic codes over \(F_2[u]/(u^4 - 1)\) and applications to DNA codes. Comput. Math. Appl. 63, 1169–1176 (2012).Google Scholar
  23. 23.
    Zhu S., Wang Y.: A class of constacyclic codes over \(F_{p}+vF_{p}\) and their Gray image. Discret. Math. Theory 311, 2677–2682 (2011).Google Scholar
  24. 24.
    Zhu S., Wang Y., Shi M.: Some result on cyclic codes over \(F_{2}+vF_{2}\). IEEE Trans. Inf. Theory 56, 1680–1684 (2010).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of MathematicsYildiz Technical UniversityIstanbulTurkey

Personalised recommendations