Skip to main content
Log in

Bounding the number of points on a curve using a generalization of Weierstrass semigroups

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this article we use techniques from coding theory to derive upper bounds for the number of rational places of the function field of an algebraic curve defined over a finite field. The used techniques yield upper bounds if the (generalized) Weierstrass semigroup (J Pure Appl Algebra 207(2), 243–260, 2006) for an n-tuple of places is known, even if the exact defining equation of the curve is not known. As shown in examples, this sometimes enables one to get an upper bound for the number of rational places for families of function fields. Our results extend results in (J Pure Appl Algebra 213(6), 1152–1156, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Apéry R.: Sur les branches superlinéaires des courbes algébriques. C. R. Acad. Sci. Paris 222, 1198–1200 (1946)

    MathSciNet  MATH  Google Scholar 

  2. Beelen P.: The order bound for general algebraic geometric codes. Finite Fields Appl. 13(3), 665–680 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beelen P., Tutaş N.: A generalization of the Weierstrass semigroup. J. Pure Appl. Algebra 207(2), 243–260 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bras-Amorós M., Vico-Oton A.: On the Geil-Matsumoto bound and the length of AG codes. Des. Codes Cryptogr. (accepted).

  5. Dijkstra E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  6. Geil O., Matsumoto R.: Bounding the number of \({\mathbb{F}_q}\)-rational places in algebraic function fields using Weierstrass semigroups. J. Pure Appl. Algebra 213(6), 1152–1156 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Høholdt T., van Lint J.H., Pellikaan R.: Algebraic geometry of codes. in Handbook of Coding Theory Vol. I, II. (North-Holland, Amsterdam, 1998), pp. 871–961.

  8. Lewittes J.: Places of degree one in function fields over finite fields. J. Pure Appl. Algebra. 69(2), 177–183 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rosales J.C., García-Sánchez P.A.: Numerical semigroups, volume 20 of developments in mathematics. Springer, (2009)

    Google Scholar 

  10. Stichtenoth H.: Algebraic Function Fields and Codes. (Universitext, Springer, Berlin, 1993).

  11. van der Geer G., Howe E., Lauter K., Ritzenthaler C.: manYPoints: Table of Curves with Many Points. Online available at http://www.manypoints.org (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Ruano.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beelen, P., Ruano, D. Bounding the number of points on a curve using a generalization of Weierstrass semigroups. Des. Codes Cryptogr. 66, 221–230 (2013). https://doi.org/10.1007/s10623-012-9685-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-012-9685-3

Keywords

Mathematics Subject Classification

Navigation