Skip to main content
Log in

Geometric WOM codes and coding strategies for multilevel flash memories

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

This paper investigates the design and application of write-once memory (WOM) codes for flash memory storage. Using ideas from Merkx (1984) we present a construction of WOM codes based on finite Euclidean geometries over \({\mathbb{F}_2}\). This construction yields WOM codes with new parameters and provides insight into the criterion that incidence structures should satisfy to give rise to good codes. We also analyze methods of adapting binary WOM codes for use on multilevel flash cells. In particular, we give two strategies based on different rewrite objectives. A brief discussion of the average-write performance of these strategies, as well as concatenation methods for WOM codes is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rivest R.L., Shamir A.: How to reuse a “write-once” memory. Inf. Control 55, 1–19 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Fiat A., Shamir A.: Generalized write-once memories. IEEE Trans. Inf. Theory 30, 470–480 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Kayser S., Yaakobi E., Siegel P.H., Vardy A., Wolf J.K.: Multiple write WOM-codes. In: Proceedings of the 48th Annual Allerton Conference on Communication, Control and Computing, September 2010.

  4. Cassuto Y., Schwartz M., Bohossian V., Bruck J.: Codes for multi-level flash memories: correcting asymmetric limited-magnitude errors. In: Proceedings of the IEEE ISIT, Nice, France, 24–29 June 2007, pp. 1176–1180.

  5. Kuznetsov A.V., Tsybakov B.S.: Coding in a memory with defective cells. Problemy Peredachi Informatsii 10(2), 52–60 (1974)

    MATH  MathSciNet  Google Scholar 

  6. Kuznetsov A.V., Han Vinck A.J.: On the general defective channel with informed encoder and capacities of some constrained memories. IEEE Trans. Inf. Theory 40(6), 1866–1871 (1994)

    Article  MATH  Google Scholar 

  7. Ahlswede R., Zhang Z.: Coding for write-efficient memory. Inf. Comput. 83(1), 80–97 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cohen G.: On the capacity of write-unidirectional memories. Bull. Inst. Math. Acad. Sin. 16(4), 285–293 (1988)

    MATH  Google Scholar 

  9. Jiang A.: On the generalization of error-correcting WOM codes. In: Proceedings of the IEEE ISIT (2007).

  10. Jiang A., Bruck J.: Joint coding for flash memory storage. In: Proceedings of the IEEE ISIT, pp. 1741–1745 (2008).

  11. Yaakobi E., Vardy A., Siegel P., Wolf J.: Multidimensional flash codes. In: Proceedings of the Annual Allerton Conference (2008).

  12. Jiang A., Li H., Wang Y.: Error scrubbing codes for flash memories. In: Proceedings of the Canadian Workshop on Information Theory (CWIT), Ottawa, Canada, May 2009, pp. 32–35.

  13. Jiang A., Bruck J.: Information representation and coding for flash memories. In: Proceedings of the IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), Victoria, BC, Canada, August 2009, pp. 920–925.

  14. Zëmor G., Cohen G.D.: Error-correcting WOM-codes. IEEE Trans. Inf. Theory 37, 730–734 (1991)

    Article  Google Scholar 

  15. Jiang A., Bohossian V., Bruck J.: Floating codes for joint information storage in write asymmetric memories. In: Proceedings of the IEEE ISIT, Nice, France, June 2007, pp. 1166–1170.

  16. Jiang A., Langberg M., Schwartz M., Bruck J.: Universal rewriting in constrained memories. In: Proceedings of the IEEE ISIT, Seoul, Korea, pp. 1219–1223 (2009).

  17. Fu F., Han Vinck A.J: On the capacity of generalized write-once memory with state transitions described by an arbitrary directed acyclic graph. IEEE Trans. Inf. Theory 45(1), 308–313 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Merkx F.: Womcodes constructed with projective geometries. Traitment du Signal 1(2-2), 227–231 (1984)

    MATH  MathSciNet  Google Scholar 

  19. Lin S., Costello D.J. Jr.: Error Control Coding: Fundamentals and Applications, 2nd edn. Prentice-Hall, Upper Saddle River (2004)

    Google Scholar 

  20. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. Elsevier, Amsterdam (1979)

    MATH  Google Scholar 

  21. Cohen G., Godlewski P., Merkx F.: Linear binary codes for write-once memories. IEEE Trans. Inf. Theory 32(5), 697–700 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  22. Huang Q., Lin S., Abdel-Ghaffar K.: Error-correcting codes for flash coding. In: Proceedings of the IEEE Information Theory and Applications, San Diego, February 2011.

  23. Finucane H., Liu Z., Mitzenmacher M.: Designing floating codes for expected performance. In: Proceedings of the 46th Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, September 2008.

  24. Chierichetti F., Finucane H., Liu Z., Mitzenmacher M.: Designing floating codes for expected performance. IEEE Trans. Inf. Theory 56, 968–978 (2010)

    Article  MathSciNet  Google Scholar 

  25. Yaakobi E., Siegel P.H., Vardy A., Wolf J.K.: Multiple error-correcting WOM codes. In: Proceedings of the IEEE ISIT, Austin, TX, June 2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine A. Kelley.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding Theory and Applications”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haymaker, K., Kelley, C.A. Geometric WOM codes and coding strategies for multilevel flash memories. Des. Codes Cryptogr. 70, 91–104 (2014). https://doi.org/10.1007/s10623-012-9681-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-012-9681-7

Keywords

Mathematics Subject Classification

Navigation