Skip to main content
Log in

New ring-linear codes from dualization in projective Hjelmslev geometries

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this article, several new constructions for ring-linear codes are given. The class of base rings are the Galois rings of characteristic 4, which include \({\mathbb {Z}_4}\) as its smallest and most important member. Associated with these rings are the Hjelmslev geometries, and the central tool for the construction is geometric dualization. Applying it to the \({\mathbb {Z}_4}\) -preimages of the Kerdock codes and a related family of codes we will call Teichmüller codes, we get two new infinite series of codes and compute their symmetrized weight enumerators. In some cases, residuals of the original code give further interesting codes. The generalized Gray map translates our codes into ordinary, generally non-linear codes in the Hamming space. The obtained parameters include (58, 27, 28)2, (60, 28, 28)2, (114, 28, 56)2, (372, 210, 184)2 and (1988, 212, 992)2 which provably have higher minimum distance than any linear code of equal length and cardinality over an alphabet of the same size (better-than-linear, BTL), as well as (180, 29, 88)2, (244, 29, 120)2, (484, 210, 240)2 and (504, 46, 376)4 where no comparable (in the above sense) linear code is known (better-than-known-linear, BTKL).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aydin N., Ray-Chaudhuri D.K.: Quasi-cyclic codes over \({\mathbb{Z}_4}\) and some new binary codes. IEEE Trans. Inf. Theory 48(7), 2065–2069 (2022)

    Article  MathSciNet  Google Scholar 

  2. Bonnecaze A., Solé P., Calderbank A.R.: Quaternary quadratic residue codes and unimodular lattices. IEEE Trans. Inf. Theory 41(2), 366–377 (1995)

    Article  MATH  Google Scholar 

  3. Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. the user language. J. Symb. Comput. 24(3–4), 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brouwer A.E., Tolhuizen L.M.G.M.: A sharpening of the Johnson bound for binary linear codes and the nonexistence of linear codes with Preparata parameters. Des. Codes Cryptogr. 3, 95–98 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Byrne E., Greferath M., Honold T.: Ring geometries, two-weight codes, and strongly regular graphs. Des. Codes Cryptogr. 48(1), 1–16 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Byrne E., Greferath M., Kohnert A., Skachek V.: New bounds for codes over finite frobenius rings. Des. Codes Cryptogr. 57(2), 169–179 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Calderbank A.R., McGuire G.: Construction of a (64,237,12) code via Galois rings. Des. Codes Cryptogr. 10, 157–165 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Calderbank A.R., McGuire G., Kumar V., Helleseth T.: Cyclic codes over \({\mathbb{Z}_4}\) , locator polynomials, and Newton’s identities. IEEE Trans. Inf. Theory 42(1), 217–226 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Constantinescu I., Heise W.: A metric for codes over residue class rings. Probl. Inf. Transm. 33, 208–213 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Delsarte P., Goethals J.M.: Alternating bilinear forms over GF q . J. Comb. Theory Ser. A 19(1), 26–50 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feulner T.: Canonization of linear codes over \({\mathbb{Z}_4}\) . Adv. Math. Commun. 5(2), 245–266 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goethals J.M.: Nonlinear codes defined by quadratic forms over GF(2). Inf. Control 31(1), 43–74 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grassl M.: Code Tables: Bounds on the parameters of various types of codes. www.codetables.de.

  14. Greferath M., Schmidt S.E.: Gray isometries for finite chain rings and a nonlinear ternary (36, 312, 15) code. IEEE Trans. Inf. Theory 45(7), 2522–2524 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Greferath M., Schmidt S.E.: Finite-ring combinatorics and MacWilliams’ equivalence theorem. J. Comb. Theory Ser. A 92(1), 17–28 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hammons A.R. Jr., Kumar P.V., Calderbank A.R., Sloane N.J.A., Solé P.: The \({\mathbb{Z}_4}\) -linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inf. Theory 40(2), 301–319 (1994)

    Article  MATH  Google Scholar 

  17. Hemme L., Honold T., Landjev I.: Arcs in projective Hjelmslev spaces obtained from Teichmüller sets. In: Proceedings of the Seventh International Workshop on Algebraic and Combinatorial Coding Theory 2000, pp. 4–12 (2000).

  18. Honold T.: Two-intersection sets in projective Hjelmslev spaces. In: Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems, pp. 1807–1813 (2010).

  19. Honold T., Landjev I.: Linear codes over finite chain rings. Electron. J. Comb. 7,–R11 (2000)

    MathSciNet  Google Scholar 

  20. Honold T., Landjev I.: On arcs in projective Hjelmslev planes. Discret. Math. 231(1–3), 265–278 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Honold T., Landjev I.: Linear codes over finite chain rings and projective Hjelmslev geometries. In: P. Solé (ed.) Codes over Rings. Proceedings of the CIMPA Summer School Ankara, Turkey, 18–29 August 2008, pp. 60–123. World Scientific, Singapore (2009).

  22. Honold T., Landjev I.: The dual construction for arcs in projective Hjelmslev spaces. Adv. Math. Commun. 5(1), 11–21 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Honold T., Nechaev A.A.: Weighted modules and representations of codes. Probl. Inf. Transm. 35(3), 205–223 (1999)

    MathSciNet  MATH  Google Scholar 

  24. Huffman W.C., Pless V.: Fundamentals of error-correcting codes. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  25. Kerdock A.M.: A class of low-rate nonlinear binary codes. Inf. Control 20, 182–187 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kiermaier M., Kohnert A.: New arcs in projective Hjelmslev planes over Galois rings. In: Proceedings of the Fifth International Workshop on Optimal Codes and Related Topics 2007, pp. 112–119 (2007).

  27. Kiermaier M., Wassermann A.: On the minimum Lee distance of quadratic residue codes over \({\mathbb{Z}_4}\) . In: Proceedings of the International Symposium on Information Theory (ISIT) 2008, pp. 2617–2619 (2008).

  28. Kiermaier M., Wassermann A.: Minimum weights and weight enumerators of \({\mathbb{Z}_4}\) -linear quadratic residue codes. IEEE Trans. Inf. Theory (2012). doi:10.1109/TIT.2012.2191389.

  29. Kiermaier M., Zwanzger J.: Online tables of linear codes over finite chain rings. http://codes.uni-bayreuth.de.

  30. Kiermaier M., Zwanzger J.: A new series of \({\mathbb{Z}_4}\) -linear codes of high minimum Lee distance derived from the Kerdock codes. In: Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems, pp. 929–932 (2010).

  31. Kiermaier M., Zwanzger J.: A \({\mathbb{Z}_4}\) -linear code of high minimum Lee distance derived from a hyperoval. Adv. Math. Commun. 5(2), 275–286 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kiermaier M., Zwanzger J.: New ring-linear codes from geometric dualization. In: Proceedings of the Seventh International Workshop on Coding and Cryptography, pp. 111–120 (2011).

  33. Kuz’min A.S., Nechaev A.A.: Linearly representable codes and the Kerdock code over an arbitrary Galois field of characteristic 2. Russ. Math. Surv. 49(5), 183–184 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  35. McDonald B.R.: Finite Rings with Identity. Marcel Dekker, New York (1974)

    MATH  Google Scholar 

  36. Nechaev A.A.: Kerdock code in a cyclic form. Discret. Math. Appl. 1(4), 365–384 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nechaev A.A.: Finite rings with applications. In: Hazewinkel, M. (eds) Handbook of Algebra, vol 5, chap 5., pp. 213–320. North-Holland, Amsterdam (2008)

    Chapter  Google Scholar 

  38. Nechaev A.A., Kuzmin A.S.: Linearly presentable codes. In: Proceedings of the International Symposium on Information Theory and its Application (ISITA) 1996, pp. 31–34 (1996).

  39. Nechaev A.A., Kuzmin A.S.: Trace-function on a Galois ring in coding theory. In: T. Mora, H. Mattson (eds.) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. Proceedings of the 12th International Symposium AAECC-12, Toulouse, France, June 23–27, Lecture Notes in Computer Science, vol. 1255, pp. 263–276. Springer, Berlin (1997).

  40. Nordstrom A.W., Robinson J.P.: An optimum nonlinear code. Inf. Control 11(5–6), 613–616 (1967)

    Article  MATH  Google Scholar 

  41. Pless V.S., Qian Z.: Cyclic codes and quadratic residue codes over Z4. IEEE Trans. Inf. Theory 42(5), 1594–1600 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  42. Preparata F.P.: A class of optimum nonlinear double-error-correcting codes. Inf. Control 13(4), 378–400 (1968)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kiermaier.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiermaier, M., Zwanzger, J. New ring-linear codes from dualization in projective Hjelmslev geometries. Des. Codes Cryptogr. 66, 39–55 (2013). https://doi.org/10.1007/s10623-012-9650-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-012-9650-1

Keywords

Mathematics Subject Classification

Navigation