Skip to main content
Log in

Ring geometries, two-weight codes, and strongly regular graphs

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

It is known that a projective linear two-weight code C over a finite field \({\mathbb{F}}_q\) corresponds both to a set of points in a projective space over \({\mathbb{F}}_q\) that meets every hyperplane in either a or b points for some integers a < b, and to a strongly regular graph whose vertices may be identified with the codewords of C. Here we extend this classical result to the case of a ring-linear code with exactly two nonzero homogeneous weights and sets of points in an associated projective ring geometry. We will introduce regular projective two-weight codes over finite Frobenius rings, we will show that such a code gives rise to a strongly regular graph, and we will give some constructions of two-weight codes using ring geometries. All these examples yield infinite families of strongly regular graphs with non-trivial parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aigner M.: Combinatorial Theory. Springer-Verlag (1997).

  2. Byrne E., O’Flaherty K.: Linear codes over \({\mathbb{Z}}_4\) with two Lee weights. Preprint

  3. Constantinescu I., Heise W.(1997). A metric for codes over residue class rings of integers. Problemy Peredachi Informatsii 33(3): 22–28

    MathSciNet  Google Scholar 

  4. Delsarte P.: Two-weight linear codes and strongly regular graphs. Report R160, MBLE Res. Labs., Brussels (1971).

  5. Delsarte P.(1972). Weights of linear codes and strongly regular normed spaces. Discrete Math. 3, 47–64

    Article  MathSciNet  MATH  Google Scholar 

  6. Calderbank R., Kantor W.M.(1986). The geometry of two-weight codes. Bull. London Math. Soc. 18, 97–122

    Article  MathSciNet  MATH  Google Scholar 

  7. Cameron P.J., van Lint J.H.: Designs, Graphs, Codes and their Links. Cambridge University Press (1991).

  8. Faith C.: Lectures on Injective Modules, Lecture Notes in Mathematics, Vol. 49, Springer-Verlag (1967).

  9. Faith C.: Algebra II: Ring Theory. Grundlehren der mathematischen Wissenschaften, Vol. 191, Springer-Verlag (1976).

  10. Greferath M., Schmidt S.E.(1999). Gray isometries for finite chain rings. IEEE Trans. Inform. Theory 45(7):2522–2524

    Article  MathSciNet  MATH  Google Scholar 

  11. Greferath M., Nechaev A., Wisbauer R. (2004). Finite quasi-Frobenius modules and linear codes. J. Algebra Appl. 3(3): 247–272

    Article  MathSciNet  MATH  Google Scholar 

  12. Greferath M., Schmidt S.E. (2000). Finite-ring combinatorics and MacWilliams’ equivalence theorem. J. Combinat. Theory Ser. A 92, 17–28

    Article  MathSciNet  MATH  Google Scholar 

  13. Hammons A., Kumar P., Calderbank A., Sloane N., Sole P.(1994). The \({\mathbb{Z}}_4\) -linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory 40(2): 301–319

    Article  MathSciNet  MATH  Google Scholar 

  14. Heise W., Honold T.: Homogeneous and egalitarian weights on finite rings. In Proceedings of the Seventh International Workshop on Algebraic and Combinatorial Coding Theory (ACCT-2000), pp. 183–188, Bansko, Bulgaria (2000).

  15. Honold T., Landjev I.(2000). Linear codes over finite chain rings. Electr. J. Combinat. 7(1): R11

    MathSciNet  Google Scholar 

  16. Honold T., Landjev I.(2001). On arcs in projective Hjelmslev planes. Discrete Math. 231(1–3): 265–278

    Article  MathSciNet  MATH  Google Scholar 

  17. Landjev I. (2007).On blocking sets in projective Hjelmslev planes. Adv. Math. Commun. 1, 65–81

    Article  MathSciNet  MATH  Google Scholar 

  18. Lam T.Y.: Lectures on Modules and Rings. Graduate Texts in Mathematics, Vol. 189. Springer-Verlag (1999).

  19. van Lint J.H., Wilson R.M.: A Course in Combinatorics. Cambridge University Press (1998).

  20. Honold T., Nechaev A.: Weighted modules and representations of codes. (Russian) Problemy Peredachi Informatsii 35(3), 18–39; translation in Prob. Inform. Transmission 35(3), 205–223 (1999).

  21. Honold T.(2001). Characterization of finite Frobenius rings. Arch. Math. (Basel) 76(6):406–415

    MathSciNet  MATH  Google Scholar 

  22. Ma S.L.(1994). A survey of partial difference sets. Des. Codes Cryptogr. 4, 221–261

    Article  MathSciNet  MATH  Google Scholar 

  23. Nechaev A.A.(1991). Kerdock codes in a cyclic form. Discrete Math. Appl. 1, 365–384

    Article  MathSciNet  MATH  Google Scholar 

  24. Rota G.-C.(1964). On the foundations of combinatorial theory I. Theory of Möbius functions. Zeitschrift für Wahrscheinlichkeitstheorie und Statistik 2, 340–368

    MathSciNet  MATH  Google Scholar 

  25. Stanley R.P.: Enumerative Combinatorics, Vol. 1. Cambridge University Press (1997). With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original.

  26. Törner G., Veldkamp F.D.(1991). Literature on geometry over rings. J. Geom. 42(1–2): 180–200

    Article  MathSciNet  MATH  Google Scholar 

  27. Wiegandt R.(1959). On the general theory of Möbius inversion formula and Möbius product. Acta Sci. Math. Szeged 20, 164–180

    MathSciNet  MATH  Google Scholar 

  28. Wood J.A. (1999). Duality for modules over finite rings and applications to coding theory. Amer. J. Math. 121(3):555–575

    Article  MathSciNet  MATH  Google Scholar 

  29. Wood J.A.: Weight functions and the extension theorem for linear codes over finite rings. In: Finite Fields: Theory, Applications and Algorithms, Contemp. Math. 225, pp. 231–243, Amer. Math. Soc., Providence (1999).

  30. Wood J.A.: Code equivalence characterizes finite Frobenius rings. Preprint. Proc. Amer. Math. Soc. (to appear).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Greferath.

Additional information

Communicated by J. Wolfmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byrne, E., Greferath, M. & Honold, T. Ring geometries, two-weight codes, and strongly regular graphs. Des. Codes Cryptogr. 48, 1–16 (2008). https://doi.org/10.1007/s10623-007-9136-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-007-9136-8

Keywords

AMS Classifications

Navigation