Skip to main content

Advertisement

Log in

Porphyromonas gingivalis Lipopolysaccharide Damages Mucosal Barrier to Promote Gastritis-Associated Carcinogenesis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Recent epidemiological studies suggested correlation between gastric cancer (GC) and periodontal disease.

Aims

We aim to clarify involvement of lipopolysaccharide of Porphyromonas gingivalis (Pg.), one of the red complex periodontal pathogens, in the GC development.

Methods

To evaluate barrier function of background mucosa against the stimulations, we applied biopsy samples from 76 patients with GC using a Ussing chamber system (UCs). K19-Wnt1/C2mE transgenic (Gan) mice and human GC cell-lines ± THP1-derived macrophage was applied to investigate the role of Pg. lipopolysaccharide in inflammation-associated carcinogenesis.

Results

In the UCs, Pg. lipopolysaccharide reduced the impedance of metaplastic and inflamed mucosa with increases in mRNA expression of toll-like receptor (TLR) 2, tumor necrosis factor (TNF) α, and apoptotic markers. In vitro, Pg. lipopolysaccharide promoted reactive oxidative stress (ROS)-related apoptosis as well as activated TLR2-β-catenin-signaling on MKN7, and it increased the TNFα production on macrophages, respectively. TNFα alone activated TLR2-β-catenin-signaling in MKN7, while it further increased ROS and TNFα in macrophages. Under coculture with macrophages isolated after stimulation with Pg. lipopolysaccharide, β-catenin-signaling in MKN7 was activated with an increase in supernatant TNFα concentration, both of which were decreased by adding a TNFα neutralization antibody into the supernatant. In Gan mice with 15-week oral administration of Pg. lipopolysaccharide, tumor enlargement with β-catenin-signaling activation were observed with an increase in TNFα with macrophage infiltration.

Conclusions

Local exposure of Pg. lipopolysaccharide may increase ROS on premalignant gastric mucosa to induce apoptosis-associated barrier dysfunction and to secrete TNFα from activated macrophages, and both stimulation of Pg. lipopolysaccharide and TNFα might activate TLR2-β-catenin-signaling in GC.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LPS:

Lipopolysaccharide

mUCs:

mini-Ussing chamber system

NAC:

N-acetyl-l-cysteine

Pg.:

Porphyromonas gingivalis

PG:

Peptidoglycan

uSS:

Updated Sydney system

qPCR:

Quantitative polymerase chain reaction

ROS:

Reactive oxygen species

shRNA:

Short hairpin RNA

TLR:

Toll-like receptor

TNFα:

Tumor necrosis factor α

TUNEL:

TdT-mediated dUTP nick end labeling

HRP:

Horse radish peroxidase

GC:

Gastric cancer

H. pylori :

Helicobacter pylori

post-eradication GC:

Gastric cancer after eradication treatment of H. pylori

PMA:

Phorbol 12-myristate 13-acetate

Mφ:

Macrophages

Gan mice:

K19-Wnt1/C2mE transgenic mice

IQR:

Interquartile range

SD:

Standard deviation

References

  1. Graham DY. Helicobacter pylori infection is the primary cause of gastric cancer. J Gastroenterol. 2000;12:90–97.

    Google Scholar 

  2. Uemura N, Okamoto S, Yamamoto S et al. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med. 2001;345:784–789.

    Article  CAS  PubMed  Google Scholar 

  3. Sepulveda AR, Graham DY. Role of Helicobacter pylori in gastric carcinogenesis. Gastroenterol Clin N Am. 2002;31:517–535.

    Article  Google Scholar 

  4. Brenner H, Arndt V, Stegmaier C et al. Is Helicobacter pylori infection a necessary condition for noncardia gastric cancer? Am J Epidemiol. 2004;159:252–258.

    Article  PubMed  Google Scholar 

  5. Amieva M, Peek RM. Pathobiology of Helicobacter pylori-induced gastric cancer. Gastroenterology. 2016;150:64–78.

    Article  CAS  PubMed  Google Scholar 

  6. Take S, Mizuno M, Ishiki K et al. Risk of gastric cancer in the second decade of follow-up after Helicobacter pylori eradication. J Gastroenterol. 2020;55:281–288.

    Article  CAS  PubMed  Google Scholar 

  7. Yan L, Chen Y, Chen F et al. Effect of Helicobacter pylori eradication on gastric cancer prevention: updated report from a randomized controlled trial with 26.5 years of follow-up. Gastroenterology. 2022;163:154–162.

    Article  CAS  PubMed  Google Scholar 

  8. Iijima K, Koike T, Abe Y et al. Alteration of correlation between serum pepsinogen concentrations and gastric acid secretion after H. pylori eradication. J Gastroenterol. 2009;44:819–825.

    Article  CAS  PubMed  Google Scholar 

  9. Kodama M, Murakami K, Okimoto T et al. Ten-year prospective follow-up of histological changes at five points on the gastric mucosa as recommended by the updated Sydney system after Helicobacter pylori eradication. J Gastroenterol. 2012;47:394–403.

    Article  PubMed  Google Scholar 

  10. Tari A, Kitadai Y, Sumii M et al. Basis of decreased risk of gastric cancer in severe atrophic gastritis with eradication of Helicobacter pylori. Dig Dis Sci. 2007;52:232–239.

    Article  PubMed  Google Scholar 

  11. Sekine H, Iijima K, Koike T et al. Regional differences in the recovery of gastric acid secretion after Helicobacter pylori eradication: evaluations with Congo red chromoendoscopy. Gastrointest Endosc. 2006;64:678–685.

    Article  PubMed  Google Scholar 

  12. Li TH, Qin Y, Sham PC, Lau KS, Chu KM, Leung WK. Alterations in gastric microbiota after H. pylori eradication and in different histological stages of gastric carcinogenesis. Sci Rep. 2017;7:44935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sung JJY, Coker OO, Chu E et al. Gastric microbes associated with gastric inflammation, atrophy and intestinal metaplasia 1 year after Helicobacter pylori eradication. Gut. 2020;69:1572–1580.

    Article  CAS  PubMed  Google Scholar 

  14. Lo C-H, Kwon S, Wang L et al. Periodontal disease, tooth loss, and risk of oesophageal and gastric adenocarcinoma: a prospective study. Gut. 2021;70:620–621.

    Article  CAS  PubMed  Google Scholar 

  15. Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010;8:481–490.

    Article  CAS  PubMed  Google Scholar 

  16. Rakoff-Nahoum S, Medzhitov R. Toll-like receptors and cancer. Nat Rev Cancer. 2009;9:57–63.

    Article  CAS  PubMed  Google Scholar 

  17. Uno K, Kato K, Atsumi T et al. Toll-like receptor (TLR) 2 induced through TLR4 signaling initiated by Helicobacter pylori cooperatively amplifies iNOS induction in gastric epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2007;293:G1004-1012.

    Article  CAS  PubMed  Google Scholar 

  18. Cadamuro ACT, Rossi AFT, Matos Biselli-Périco J et al. Effect of Helicobacter pylori eradication on TLR2 and TLR4 expression in patients with gastric lesions. Mediat Inflamm. 2015;2015:481972.

    Article  Google Scholar 

  19. Ogawa T, Asai Y, Makimura Y, Tamai R. Chemical structure and immunobiological activity of Porphyromonas gingivalis lipid A. Front Biosci. 2007;12:3795–3812.

    Article  CAS  PubMed  Google Scholar 

  20. Darveau RP, Pham TT, Lemley K et al. Porphyromonas gingivalis lipopolysaccharide contains multiple lipid A species that functionally interact with both Toll-like receptors 2 and 4. Infect Immun. 2004;72:5041–5051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tye H, Kennedy CL, Najdovska M et al. STAT3-driven upregulation of TLR2 promotes gastric tumorigenesis independent of tumor inflammation. Cancer Cell. 2012;22:466–478.

    Article  CAS  PubMed  Google Scholar 

  22. West AC, Tang K, Tye H et al. Identification of a TLR2-regulated gene signature associated with tumor cell growth in gastric cancer. Oncogene. 2017;36:5134–5144.

    Article  CAS  PubMed  Google Scholar 

  23. Oshima H, Hioki K, Popivanova BK et al. Prostaglandin E2 signaling and bacterial infection recruit tumor-promoting macrophages to mouse gastric tumors. Gastroenterology. 2011;140:596–607.

    Article  CAS  PubMed  Google Scholar 

  24. Oshima H, Matsunaga A, Fujimura T et al. Carcinogenesis in mouse stomach by simultaneous activation of the Wnt signaling and prostaglandin E2 pathway. Gastroenterology. 2006;131:1086–1095.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou Q, Desta T, Fenton M, Graves DT, Amar S. Cytokine profiling of macrophages exposed to Porphyromonas gingivalis, its lipopolysaccharide, or its FimA protein. Infect Immun. 2005;73:935–943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Holden JA, Attard TJ, Laughton KM, Mansell A, O’Brien-Simpson NM, Reynolds EC. Porphyromonas gingivalis lipopolysaccharide weakly activates M1 and M2 polarized mouse macrophages but induces inflammatory cytokines. Infect Immun. 2014;82:4190–4203.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kondo S, Miyake M. Simultaneous prediction of intestinal absorption and metabolism using the mini-Ussing chamber system. J Pharm Sci. 2019;108:763–769.

    Article  CAS  PubMed  Google Scholar 

  28. Dixon MF, Genta RM, Yardley JH, Correa P. Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am J Surg Pathol. 1996;20:1161–1181.

    Article  CAS  PubMed  Google Scholar 

  29. Bertazza L, Mocellin S. The dual role of tumor necrosis factor in cancer biology. Curr Med Chem 2010;17:3337–3352.

    Article  CAS  PubMed  Google Scholar 

  30. Liu Z, Brooks RS, Ciappio ED et al. Diet-induced obesity elevates colonic TNF-α in mice and is accompanied by an activation of Wnt signaling: a mechanism for obesity-associated colorectal cancer. J Nutr Biochem. 2012;23:1207–1213.

    Article  CAS  PubMed  Google Scholar 

  31. Guo C, Kim SJ, Frederick AM et al. Genetic ablation of tumor necrosis factor-alpha attenuates the promoted colonic Wnt signaling in high fat diet-induced obese mice. J Nutr Biochem. 2020;77:108302.

    Article  CAS  PubMed  Google Scholar 

  32. Kim J, Park C, Kim KH et al. Single-cell analysis of gastric pre-cancerous and cancer lesions reveals cell lineage diversity and intratumoral heterogeneity. npj Precis Oncol. 2022;6:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tsuboi A, Ohsawa S, Umetsu D et al. Competition for space is controlled by apoptosis-induced change of local epithelial topology. Curr Biol. 2018;28:2115–2128.

    Article  CAS  PubMed  Google Scholar 

  34. Salazar CR, Francois F, Li Y et al. Association between oral health and gastric precancerous lesions. Carcinogenesis. 2012;33:399–403.

    Article  CAS  PubMed  Google Scholar 

  35. Iwashita M, Hayashi M, Nishimura Y, Yamashita A. The link between periodontal inflammation and obesity. Curr Oral Health Rep. 2021;8:76–83.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mulhall H, Huck O, Amar S. Porphyromonas gingivalis, a long-range pathogen: systemic impact and therapeutic implications. Microorganisms. 2020;8:869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kato T, Yamazaki K, Nakajima M et al. Oral administration of Porphyromonas gingivalis alters the gut microbiome and serum metabolome. mSphere. 2018;3:e00460-18.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Arimatsu K, Yamada H, Miyazawa H et al. Oral pathobiont induces systemic inflammation and metabolic changes associated with alteration of gut microbiota. Sci Rep. 2014;4:4828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kageyama S, Takeshita T, Takeuchi K et al. Characteristics of the salivary microbiota in patients with various digestive tract cancers. Front Microbiol. 2019;10:1780.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yuan X, Liu Y, Kong J et al. Different frequencies of Porphyromonas gingivalis infection in cancers of the upper digestive tract. Cancer Lett. 2017;404:1–7.

    Article  CAS  PubMed  Google Scholar 

  41. Sano M, Uchida T, Igarashi M et al. Increase in the lipopolysaccharide activity and accumulation of gram-negative bacteria in the stomach with low acidity. Clin Transl Gastroenterol. 2020;11:e00190.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhang D, Chen L, Li S, Gu Z, Yan J. Lipopolysaccharide of Porphyromonas gingivalis induces IL-1β, TNF-α and IL-6 production by THP-1 cells in a way different from that of Escherichia coli LPS. Innate Immun. 2008;14:99–107.

    Article  Google Scholar 

  43. Mandell L, Moran AP, Cocchiarella A et al. Intact gram-negative Helicobacter pylori, Helicobacter felis, and Helicobacter hepaticus bacteria activate innate immunity via Toll-like receptor 2 but not Toll-like receptor 4. Infect Immun. 2004;72:6446–6454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao DR, Jiang YS, Sun JY, Li HH, Luo XL, Zhao MM. Anti-inflammatory mechanism involved in 4-ethylguaiacol-mediated inhibition of LPS-Induced inflammation in THP-1 cells. J Agric Food Chem. 2019;67:1230–1243.

    Article  CAS  PubMed  Google Scholar 

  45. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell. 2005;120:649–661.

    Article  CAS  PubMed  Google Scholar 

  46. Arcone R, Palma M, Pagliara V, Graziani G, Masullo M, Nardone G. Green tea polyphenols affect invasiveness of human gastric MKN-28 cells by inhibition of LPS or TNF-α induced Matrix Metalloproteinase-9/2. Biochim Open. 2016;3:56–63.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Oguma K, Oshima H, Aoki M et al. Activated macrophages promote Wnt signaling through tumor necrosis factor-alpha in gastric tumor cells. EMBO J. 2008;27:1671–1681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Echizen K, Horiuchi K, Aoki Y et al. NFκB-induced NOX1 activation promotes gastric tumorigenesis through the expansion of SOX2-positive epithelial cells. Oncogene. 2019;38:4250–4263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brenneman KE, Willingham C, Kilbourne JA, Curtiss R 3rd, Roland KL. A low gastric pH mouse model to evaluate live attenuated bacterial vaccines. PLoS ONE. 2014;29:e87411.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Biomedical Research Unit of Tohoku University Hospital for technical support, and we thank the Cancer Research Institute of Kanazawa University for kind gift of K19-Wnt1/C2mE mice.

Funding

This work was supported by JSPS KAKENHI grant number 19K08434, and the grant for Basic Research of the Japanese Society for Helicobacter research (2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaname Uno.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 3813 kb)

Supplementary Figure. Comprehensive analysis of h-Pg. LPS-stimulated apoptosis-related gene expressions in MKN7. The apoptosis antibody array demonstrated the induction of the proteins of apoptosis-signaling and TNF-signaling in MKN7 (N = 2: Int/pos = the ratio of signal of the target gene per those of positive control).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oriuchi, M., Lee, S., Uno, K. et al. Porphyromonas gingivalis Lipopolysaccharide Damages Mucosal Barrier to Promote Gastritis-Associated Carcinogenesis. Dig Dis Sci 69, 95–111 (2024). https://doi.org/10.1007/s10620-023-08142-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-023-08142-6

Keywords

Navigation