Skip to main content
Log in

Circ_0006948 Contributes to Cell Growth, Migration, Invasion and Epithelial–Mesenchymal Transition in Esophageal Carcinoma

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Circular RNAs (circRNAs) can act as promoters or inhibitors in cancer progression. Has_circ_0006948 (circ_0006948) was reported to aggravate the malignant behaviors of esophageal carcinoma (EC).

Aims

This study focused on investigating the molecular mechanism of circ_0006948 in EC progression.

Methods

The quantitative real-time polymerase chain reaction was performed to detect the expression of circ_0006948, microRNA-4262 (miR-4262) and fibronectin type III domain containing 3B (FNDC3B). Cell growth analysis was conducted by Cell Counting Kit-8 and colony formation assays. Cell migration and invasion were assessed by transwell assay. Epithelial–mesenchymal transition (EMT)-associated proteins and FNDC3B protein expression were assayed using western blot. Dual-luciferase reporter and RNA pull-down assays were performed to validate the target combination. Xenograft tumor assay was used for investigating the role of circ_0006948 in vivo.

Results

Circ_0006948 was upregulated in EC tissues and cells. Downregulating the expression of circ_0006948 or FNDC3B repressed cell growth, migration, invasion and EMT in EC cells. Target analysis indicated that miR-4262 was a target for circ_0006948 and FNDC3B was a downstream gene for miR-4262. Moreover, circ_0006948 could affect the expression of FNDC3B via sponging miR-4262. The effects of si-circ_0006948#1 on EC cells were partly restored by miR-4262 inhibition or FNDC3B overexpression. In addition, circ_0006948 also facilitated EC tumorigenesis in vivo by targeting the miR-4262/FNDC3B axis.

Conclusion

Taken together, circ_0006948 functioned as an oncogenic factor in EC by the miR-4262-mediated FNDC3B expression regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Domper Arnal MJ, Ferrandez Arenas A, Lanas Arbeloa A. Esophageal cancer: risk factors, screening and endoscopic treatment in Western and Eastern countries. World J Gastroenterol. 2015;21:7933–7943. https://doi.org/10.3748/wjg.v21.i26.7933.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kurtom S, Kaplan BJ. Esophagus and gastrointestinal junction tumors. Surg Clin North Am. 2020;100:507–521. https://doi.org/10.1016/j.suc.2020.02.003.

    Article  PubMed  Google Scholar 

  3. Borggreve AS, Kingma BF, Domrachev SA et al. Surgical treatment of esophageal cancer in the era of multimodality management. Ann N Y Acad Sci. 2018;1434:192–209. https://doi.org/10.1111/nyas.13677.

    Article  PubMed  Google Scholar 

  4. Park R, Williamson S, Kasi A et al. Immune therapeutics in the treatment of advanced gastric and esophageal cancer. Anticancer Res. 2018;38:5569–5580. https://doi.org/10.21873/anticanres.12891.

    Article  CAS  PubMed  Google Scholar 

  5. Qin J, Peng Y, Chen W et al. Comparative study of esophagectomy, endoscopic therapy, and radiotherapy for cT1N0M0 esophageal cancer in elderly patients: a SEER database analysis. Thorac Cancer. 2019;10:1511–1520. https://doi.org/10.1111/1759-7714.13080.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Talukdar FR, di Pietro M, Secrier M et al. Molecular landscape of esophageal cancer: implications for early detection and personalized therapy. Ann N Y Acad Sci. 2018;1434:342–359. https://doi.org/10.1111/nyas.13876.

    Article  CAS  PubMed  Google Scholar 

  7. Xiao Y, Su M, Ou W et al. Involvement of noncoding RNAs in epigenetic modifications of esophageal cancer. Biomed Pharmacother. 2019;117:109192. https://doi.org/10.1016/j.biopha.2019.109192.

    Article  CAS  PubMed  Google Scholar 

  8. Feng Q, Zhang H, Yao D et al. Emerging role of non-coding RNAs in esophageal squamous cell carcinoma. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms21010258.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang X, Lu N, Wang L et al. Circular RNAs and esophageal cancer. Cancer Cell Int. 2020;20:362. https://doi.org/10.1186/s12935-020-01451-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Naeli P, Pourhanifeh MH, Karimzadeh MR et al. Circular RNAs and gastrointestinal cancers: epigenetic regulators with a prognostic and therapeutic role. Crit Rev Oncol Hematol. 2020;145:102854. https://doi.org/10.1016/j.critrevonc.2019.102854.

    Article  PubMed  Google Scholar 

  11. Shi Y, Guo Z, Fang N et al. hsa_circ_0006168 sponges miR-100 and regulates mTOR to promote the proliferation, migration and invasion of esophageal squamous cell carcinoma. Biomed Pharmacother. 2019;117:109151. https://doi.org/10.1016/j.biopha.2019.109151.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Z, Lin W, Gao L et al. Hsa_circ_0004370 promotes esophageal cancer progression through miR-1294/LASP1 pathway. Biosci Rep. 2019;39:10. https://doi.org/10.1042/BSR20182377.

    Article  Google Scholar 

  13. Li RC, Ke S, Meng FK et al. CiRS-7 promotes growth and metastasis of esophageal squamous cell carcinoma via regulation of miR-7/HOXB13. Cell Death Dis. 2018;9:838. https://doi.org/10.1038/s41419-018-0852-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pan Z, Lin J, Wu D et al. Hsa_circ_0006948 enhances cancer progression and epithelial–mesenchymal transition through the miR-490-3p/HMGA2 axis in esophageal squamous cell carcinoma. Aging (Albany NY). 2019;11:11937–11954. https://doi.org/10.18632/aging.102519.

    Article  Google Scholar 

  15. Zhang H, Jiang H, Zhang H et al. miR-4262, low level of which predicts poor prognosis, targets proto-oncogene CD163 to suppress cell proliferation and invasion in gastric cancer. Onco Targets Ther. 2019;12:599–607. https://doi.org/10.2147/OTT.S187881.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Feng J. Upregulation of MicroRNA-4262 targets Kaiso (ZBTB33) to inhibit the proliferation and EMT of cervical cancer cells. Oncol Res. 2018;26:1215–1225. https://doi.org/10.3727/096504017X15021536183526.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu Z, Zhao C, Du S et al. MiR-4262 inhibits the development of esophageal cancer by negatively regulating KLF6 level. Exp Mol Pathol. 2020;115:104476. https://doi.org/10.1016/j.yexmp.2020.104476.

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Yang J, Wang H et al. FNDC3B, targeted by miR-125a-5p and miR-217, promotes the proliferation and invasion of colorectal cancer cells via PI3K/mTOR signaling. Onco Targets Ther. 2020;13:3501–3510. https://doi.org/10.2147/OTT.S226520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li YQ, Chen Y, Xu YF et al. FNDC3B 3’-UTR shortening escapes from microRNA-mediated gene repression and promotes nasopharyngeal carcinoma progression. Cancer Sci. 2020;111:1991–2003. https://doi.org/10.1111/cas.14394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang L, Song X, Zhu J et al. Tumor suppressor microRNA-34a inhibits cell migration and invasion by targeting MMP-2/MMP-9/FNDC3B in esophageal squamous cell carcinoma. Int J Oncol. 2017;51:378–388. https://doi.org/10.3892/ijo.2017.4015.

    Article  CAS  PubMed  Google Scholar 

  21. Yang Y, Li D, Yang Y et al. An integrated analysis of the effects of microRNA and mRNA on esophageal squamous cell carcinoma. Mol Med Rep. 2015;12:945–952. https://doi.org/10.3892/mmr.2015.3557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aiello NM, Kang Y. Context-dependent EMT programs in cancer metastasis. J Exp Med. 2019;216:1016–1026. https://doi.org/10.1084/jem.20181827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cai H, Li Y, Niringiyumukiza JD et al. Circular RNA involvement in aging: an emerging player with great potential. Mech Ageing Dev. 2019;178:16–24. https://doi.org/10.1016/j.mad.2018.11.002.

    Article  CAS  PubMed  Google Scholar 

  24. Wang JM, Li XJ, Wang J. Circular RNA circ_0067934 functions as an oncogene in breast cancer by targeting Mcl-1. Eur Rev Med Pharmacol Sci. 2020;24:7214. https://doi.org/10.26355/eurrev_202007_21865.

    Article  PubMed  Google Scholar 

  25. Zhang Y, Wang M, Zang X et al. CircHN1 affects cell proliferation and migration in gastric cancer. J Clin Lab Anal. 2020. https://doi.org/10.1002/jcla.23433.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yalan S, Yanfang L, He C et al. Circular RNA circRHOBTB3 inhibits ovarian cancer progression through PI3K/AKT signaling pathway. Panminerva Med. 2020. https://doi.org/10.23736/S0031-0808.20.03957-9.

    Article  PubMed  Google Scholar 

  27. Jiao J, Jiao X, Liu Q et al. The regulatory role of circRNA_101308 in cervical cancer and the prediction of its mechanism. Cancer Manag Res. 2020;12:4807–4815. https://doi.org/10.2147/CMAR.S242615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Panda AC. Circular RNAs Act as miRNA Sponges. Adv Exp Med Biol. 2018;1087:67–79. https://doi.org/10.1007/978-981-13-1426-1_6.

    Article  CAS  PubMed  Google Scholar 

  29. Zhu X, Du J, Gu Z. Circ-PVT1/miR-106a-5p/HK2 axis regulates cell growth, metastasis and glycolytic metabolism of oral squamous cell carcinoma. Mol Cell Biochem. 2020. https://doi.org/10.1007/s11010-020-03840-5.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sun X, Luo L, Gao Y. Circular RNA PVT1 enhances cell proliferation but inhibits apoptosis through sponging microRNA-149 in epithelial ovarian cancer. J Obstet Gynaecol Res. 2020;46:625–635. https://doi.org/10.1111/jog.14190.

    Article  CAS  PubMed  Google Scholar 

  31. Liu YY, Zhang LY, Du WZ. Circular RNA circ-PVT1 contributes to paclitaxel resistance of gastric cancer cells through the regulation of ZEB1 expression by sponging miR-124-3p. Biosci Rep. 2019. https://doi.org/10.1042/BSR20193045.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pan Y, Xu T, Liu Y et al. Upregulated circular RNA circ_0025033 promotes papillary thyroid cancer cell proliferation and invasion via sponging miR-1231 and miR-1304. Biochem Biophys Res Commun. 2019;510:334–338. https://doi.org/10.1016/j.bbrc.2019.01.108.

    Article  CAS  PubMed  Google Scholar 

  33. Cheng H, Wang N, Tian J et al. Circular RNA Circ_0025033 promotes the evolvement of ovarian cancer through the regulation of miR-330-5p/KLK4 axis. Cancer Manag Res. 2020;12:2753–2765. https://doi.org/10.2147/CMAR.S241372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Niu X, Nong S, Gong J et al. MiR-194 promotes hepatocellular carcinoma through negative regulation of CADM1. Int J Clin Exp Pathol. 2020;13:1518–1528

    PubMed  PubMed Central  Google Scholar 

  35. Pei B, Li T, Qian Q et al. Downregulation of microRNA-30c-5p was responsible for cell migration and tumor metastasis via COTL1-mediated microfilament arrangement in breast cancer. Gland Surg. 2020;9:747–758. https://doi.org/10.21037/gs-20-472.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu C, Ma T, Jiang T et al. Abnormal increase of miR-4262 promotes cell proliferation and migration by targeting large tumor suppressor 1 in gliomas. Pathol Res Pract. 2020;216:152778. https://doi.org/10.1016/j.prp.2019.152778.

    Article  CAS  PubMed  Google Scholar 

  37. Sun H, Zhou X, Bao Y et al. Involvement of miR-4262 in paclitaxel resistance through the regulation of PTEN in non-small cell lung cancer. Open Biol. 2019;9:180227. https://doi.org/10.1098/rsob.180227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhong Z, Zhang H, Hong M et al. FNDC3B promotes epithelial–mesenchymal transition in tongue squamous cell carcinoma cells in a hypoxic microenvironment. Oncol Rep. 2018;39:1853–1859. https://doi.org/10.3892/or.2018.6231.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Yue.

Ethics declarations

Conflict of interest

The authors declare that they have no financial conflicts of interest.

Ethical approval and consent participate

Written informed consent was obtained from patients with approval by the Institutional Review Board in Jinan Central Hospital Affiliated to Shandong First Medical University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

The anti-tumor regulation of si-circ_0006948#1 was reversed by miR-4262 inhibitor. (A–K) Cellular assays were performed by CCK-8 (A–B) and colony formation assay (C–D) for cell growth, transwell assay for cell migration (F–G) and invasion (H–I), and western blot for EMT-related protein detection after transfection of si-NC, si-circ_0006948#1, si-circ_0006948#1+anti-NC or si-circ_0006948#1+anti-miR-4262. **P < 0.01, ***P < 0.001.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, M., Liu, Y., Zuo, T. et al. Circ_0006948 Contributes to Cell Growth, Migration, Invasion and Epithelial–Mesenchymal Transition in Esophageal Carcinoma. Dig Dis Sci 67, 492–503 (2022). https://doi.org/10.1007/s10620-021-06894-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-021-06894-7

Keywords

Navigation