Skip to main content

Advertisement

Log in

Circ-PVT1/miR-106a-5p/HK2 axis regulates cell growth, metastasis and glycolytic metabolism of oral squamous cell carcinoma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Oral squamous cell carcinoma (OSCC) is the most commonly diagnosed oral cavity malignancy. A handful of circular RNAs (circRNAs) have recently shown to act as crucial regulators in OSCC, including circRNA plasmacytoma variant translocation 1 (circ-PVT1). However, further exploration is still needed for the underlying functional mechanism behind circ-PVT1 in OSCC. The levels of circ-PVT1, microRNA-106a-5p (miR-106a-5p) and hexokinase II (HK2) were all examined applying with quantitative real-time polymerase chain reaction (qRT-PCR). Cellular analyses (cell viability, apoptosis, metastasis and glycolysis) in vitro were performed via cell counting kit-8 (CCK-8), flow cytometry, transwell migration/invasion assays and glycolysis-related indications (glucose consumption, lactate production and ATP/ADP ratio). HK2 protein level was measured through western blot. Dual-luciferase reporter assay was conducted to study the interplay between miR-106a-5p and circ-PVT1 or HK2. Xenografts in mice were used for analyzing circ-PVT1 in vivo. Circ-PVT1 was expressed with abnormal high level while miR-106a-5p was down-regulated in OSCC tissues and cells. Circ-PVT1 knockdown reduced OSCC cell growth, metastasis and glycolysis. Moreover, circ-PVT1 acted in OSCC by functioning as a miR-106a-5p sponge. HK2 was a target of miR-106a-5p and miR-106a-5p played an anti-tumor role in OSCC by inhibiting HK2. Furthermore, HK2 could be regulated by circ-PVT1 via targeting miR-106a-5p. In xenograft models of mice, down-regulation of circ-PVT1 retarded tumorigenesis via the miR-106a-5p/HK2 axis. Our works suggested that circ-PVT1 directly combined with miR-106a-5p to mediate HK2 level, consequently regulating cellular behaviors in OSCC as a tumor promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vucicevic Boras V, Fucic A, Virag M, Gabric D, Blivajs I, Tomasovic-Loncaric C, Rakusic Z, Bisof V, Novere NL, Velimir Vrdoljak D (2018) Significance of stroma in biology of oral squamous cell carcinoma. Tumori 104:9–14. https://doi.org/10.5301/tj.5000673

    Article  CAS  PubMed  Google Scholar 

  2. Falaki F, Dalirsani Z, Pakfetrat A, Falaki A, Saghravanian N, Nosratzehi T, Pazouki M (2011) Clinical and histopathological analysis of oral squamous cell carcinoma of young patients in Mashhad, Iran: a retrospective study and review of literature. Med Oral Patol Oral Cir Bucal 16:e473–e477. https://doi.org/10.4317/medoral.16.e473

    Article  PubMed  Google Scholar 

  3. Jiang S, Dong Y (2017) Human papillomavirus and oral squamous cell carcinoma: a review of HPV-positive oral squamous cell carcinoma and possible strategies for future. Curr Probl Cancer 41:323–327. https://doi.org/10.1016/j.currproblcancer.2017.02.006

    Article  PubMed  Google Scholar 

  4. Michikawa C, Izumo T, Sumino J, Morita T, Ohyama Y, Michi Y, Uzawa N (2018) Small size of metastatic lymph nodes with extracapsular spread greatly impacts treatment outcomes in oral squamous cell carcinoma patients. Int J Oral Maxillofac Surg 47:830–835. https://doi.org/10.1016/j.ijom.2017.12.007

    Article  CAS  PubMed  Google Scholar 

  5. Vatsyayan A, Mandlik D, Patel P, Patel P, Sharma N, Joshipura A, Patel M, Odedra P, Dubbal JC, Shah DS, Kanhere SA, Sanghvi KJ, Patel K (2019) Metastasis of squamous cell carcinoma of the head and neck to the thyroid: a single institution’s experience with a review of relevant publications. Br J Oral Maxillofac Surg 57:609–615. https://doi.org/10.1016/j.bjoms.2019.05.012

    Article  CAS  PubMed  Google Scholar 

  6. Aires FT, Lin CS, Matos LL, Kulcsar MAV, Cernea CR (2017) Risk factors for distant metastasis in patients with oral cavity squamous cell carcinoma undergoing surgical treatment. ORL J Otorhinolaryngol Relat Spec 79:347–355. https://doi.org/10.1159/000485627

    Article  PubMed  Google Scholar 

  7. Blatt S, Kruger M, Ziebart T, Sagheb K, Schiegnitz E, Goetze E, Al-Nawas B, Pabst AM (2017) Biomarkers in diagnosis and therapy of oral squamous cell carcinoma: a review of the literature. J Craniomaxillofac Surg 45:722–730. https://doi.org/10.1016/j.jcms.2017.01.033

    Article  PubMed  Google Scholar 

  8. Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Sun W, Dou K, Li H (2015) Circular RNA: a new star of noncoding RNAs. Cancer Lett 365:141–148. https://doi.org/10.1016/j.canlet.2015.06.003

    Article  CAS  PubMed  Google Scholar 

  9. Yin Y, Long J, He Q, Li Y, Liao Y, He P, Zhu W (2019) Emerging roles of circRNA in formation and progression of cancer. J Cancer 10:5015–5021. https://doi.org/10.7150/jca.30828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang C, Ma L, Niu Y, Wang Z, Xu X, Li Y, Yu Y (2020) Circular RNA in lung cancer research: biogenesis, functions, and roles. Int J Biol Sci 16:803–814. https://doi.org/10.7150/ijbs.39212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun J, Li B, Shu C, Ma Q, Wang J (2020) Functions and clinical significance of circular RNAs in glioma. Mol Cancer 19:34. https://doi.org/10.1186/s12943-019-1121-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jahani S, Nazeri E, Majidzadeh AK, Jahani M, Esmaeili R (2020) Circular RNA; a new biomarker for breast cancer: a systematic review. J Cell Physiol. https://doi.org/10.1002/jcp.29558

    Article  PubMed  Google Scholar 

  13. Momen-Heravi F, Bala S (2018) Emerging role of non-coding RNA in oral cancer. Cell Signal 42:134–143. https://doi.org/10.1016/j.cellsig.2017.10.009

    Article  CAS  PubMed  Google Scholar 

  14. He T, Li X, Xie D, Tian L (2019) Overexpressed circPVT1 in oral squamous cell carcinoma promotes proliferation by serving as a miRNA sponge. Mol Med Rep 20:3509–3518. https://doi.org/10.3892/mmr.2019.10615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Panda AC (2018) Circular RNAs Act as miRNA Sponges. Adv Exp Med Biol 1087:67–79. https://doi.org/10.1007/978-981-13-1426-1_6

    Article  CAS  PubMed  Google Scholar 

  16. Yuan X, Xu Y, Wei Z, Ding Q (2020) CircAP2A2 acts as a ceRNA to participate in infantile hemangiomas progression by sponging miR-382-5p via regulating the expression of VEGFA. J Clin Lab Anal. https://doi.org/10.1002/jcla.23258

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pan H, Pan J, Chen P, Gao J, Guo D, Yang Z, Ji L, Lv H, Guo Y, Xu D (2020) Circular RNA circUBA1 promotes gastric cancer proliferation and metastasis by acting as a competitive endogenous RNA through sponging miR-375 and regulating TEAD4. Cancer Lett. https://doi.org/10.1016/j.canlet.2020.02.022

    Article  PubMed  Google Scholar 

  18. Wang L, Wei Y, Yan Y, Wang H, Yang J, Zheng Z, Zha J, Bo P, Tang Y, Guo X, Chen W, Zhu X, Ge L (2018) CircDOCK1 suppresses cell apoptosis via inhibition of miR196a5p by targeting BIRC3 in OSCC. Oncol Rep 39:951–966. https://doi.org/10.3892/or.2017.6174

    Article  CAS  PubMed  Google Scholar 

  19. Shi B, Ma C, Liu G, Guo Y (2019) MiR-106a directly targets LIMK1 to inhibit proliferation and EMT of oral carcinoma cells. Cell Mol Biol Lett 24:1. https://doi.org/10.1186/s11658-018-0127-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang N, Wei ZL, Yin J, Zhang L, Wang J, Jin ZL (2018) MiR-106a* inhibits oral squamous cell carcinoma progression by directly targeting MeCP2 and suppressing the Wnt/beta-Catenin signaling pathway. Am J Transl Res 10:3542–3554

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun X, Zhang L (2017) MicroRNA-143 suppresses oral squamous cell carcinoma cell growth, invasion and glucose metabolism through targeting hexokinase 2. Biosci Rep. https://doi.org/10.1042/BSR20160404

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu L, Wang Y, Bai R, Yang K, Tian Z (2016) MiR-186 inhibited aerobic glycolysis in gastric cancer via HIF-1alpha regulation. Oncogenesis 5:e224. https://doi.org/10.1038/oncsis.2016.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Naito S, von Eschenbach AC, Giavazzi R, Fidler IJ (1986) Growth and metastasis of tumor cells isolated from a human renal cell carcinoma implanted into different organs of nude mice. Cancer Res 46:4109–4115

    CAS  PubMed  Google Scholar 

  24. Meng Y, Zhao EY, Zhou Y, Qiang DX, Wang S, Shi L, Jiang LY, Bi LJ (2020) Circular RNA hsa_circ_0011946 promotes cell growth, migration, and invasion of oral squamous cell carcinoma by upregulating PCNA. Eur Rev Med Pharmacol Sci 24:1226–1232. https://doi.org/10.26355/eurrev_202002_20175

    Article  CAS  PubMed  Google Scholar 

  25. Peng QS, Cheng YN, Zhang WB, Fan H, Mao QH, Xu P (2020) circRNA_0000140 suppresses oral squamous cell carcinoma growth and metastasis by targeting miR-31 to inhibit Hippo signaling pathway. Cell Death Dis 11:112. https://doi.org/10.1038/s41419-020-2273-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun X, Luo L, Gao Y (2020) Circular RNA PVT1 enhances cell proliferation but inhibits apoptosis through sponging microRNA-149 in epithelial ovarian cancer. J Obstet Gynaecol Res. https://doi.org/10.1111/jog.14190

    Article  PubMed  Google Scholar 

  27. Wang Z, Su M, Xiang B, Zhao K, Qin B (2019) Circular RNA PVT1 promotes metastasis via miR-145 sponging in CRC. Biochem Biophys Res Commun 512:716–722. https://doi.org/10.1016/j.bbrc.2019.03.121

    Article  CAS  PubMed  Google Scholar 

  28. Chi G, Yang F, Xu D, Liu W (2020) Silencing hsa_circ_PVT1 (circPVT1) suppresses the growth and metastasis of glioblastoma multiforme cells by up-regulation of miR-199a-5p. Artif Cells Nanomed Biotechnol 48:188–196. https://doi.org/10.1080/21691401.2019.1699825

    Article  PubMed  Google Scholar 

  29. Ganapathy-Kanniappan S (2018) Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype. Crit Rev Biochem Mol Biol 53:667–682. https://doi.org/10.1080/10409238.2018.1556578

    Article  CAS  PubMed  Google Scholar 

  30. Cao L, Wang M, Dong Y, Xu B, Chen J, Ding Y, Qiu S, Li L, Karamfilova Zaharieva E, Zhou X, Xu Y (2020) Circular RNA circRNF20 promotes breast cancer tumorigenesis and Warburg effect through miR-487a/HIF-1alpha/HK2. Cell Death Dis 11:145. https://doi.org/10.1038/s41419-020-2336-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou J, Zhang S, Chen Z, He Z, Xu Y, Li Z (2019) CircRNA-ENO1 promoted glycolysis and tumor progression in lung adenocarcinoma through upregulating its host gene ENO1. Cell Death Dis 10:885. https://doi.org/10.1038/s41419-019-2127-7

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ding C, Wu Z, You H, Ge H, Zheng S, Lin Y, Wu X, Lin Z, Kang D (2019) CircNFIX promotes progression of glioma through regulating miR-378e/RPN2 axis. J Exp Clin Cancer Res 38:506. https://doi.org/10.1186/s13046-019-1483-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ogawa H, Nakashiro KI, Tokuzen N, Kuribayashi N, Goda H, Uchida D (2020) MicroRNA-361-3p is a potent therapeutic target for oral squamous cell carcinoma. Cancer Sci. https://doi.org/10.1111/cas.14359

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang Y, Zhang Z, Huang W, Zeng J (2020) MiR-4282 inhibits tumor progression through down-regulation of ZBTB2 by targeting LIN28B in oral squamous cell carcinoma. J Cell Physiol. https://doi.org/10.1002/jcp.29458

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wu M, Duan Q, Liu X, Zhang P, Fu Y, Zhang Z, Liu L, Cheng J, Jiang H (2020) MiR-155-5p promotes oral cancer progression by targeting chromatin remodeling gene ARID2. Biomed Pharmacother 122:109696. https://doi.org/10.1016/j.biopha.2019.109696

    Article  CAS  PubMed  Google Scholar 

  36. Chen L, Kong R, Wu C, Wang S, Liu Z, Liu S, Li S, Chen T, Mao C, Liu S (2020) Circ-MALAT1 functions as both an mRNA translation brake and a microRNA sponge to promote self-renewal of hepatocellular cancer stem cells. Adv Sci (Weinh) 7:1900949. https://doi.org/10.1002/advs.201900949

    Article  CAS  Google Scholar 

  37. Zhang W, Zhang C, Hu C, Luo C, Zhong B, Yu X (2020) Circular RNA-CDR1as acts as the sponge of microRNA-641 to promote osteoarthritis progression. J Inflamm (Lond) 17:8. https://doi.org/10.1186/s12950-020-0234-y

    Article  CAS  Google Scholar 

  38. Denby L, Baker AH (2016) Targeting non-coding RNA for the therapy of renal disease. Curr Opin Pharmacol 27:70–77. https://doi.org/10.1016/j.coph.2016.02.001

    Article  CAS  PubMed  Google Scholar 

  39. Lis P, Dylag M, Niedzwiecka K, Ko YH, Pedersen PL, Goffeau A, Ulaszewski S (2016) The HK2 dependent “Warburg Effect” and mitochondrial oxidative phosphorylation in cancer: targets for effective therapy with 3-bromopyruvate. Molecules. https://doi.org/10.3390/molecules21121730

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhu W, Huang Y, Pan Q, Xiang P, Xie N, Yu H (2017) MicroRNA-98 suppress Warburg effect by targeting HK2 in colon cancer cells. Dig Dis Sci 62:660–668. https://doi.org/10.1007/s10620-016-4418-5

    Article  CAS  PubMed  Google Scholar 

  41. Ding Z, Guo L, Deng Z, Li P (2020) Circ-PRMT5 enhances the proliferation, migration and glycolysis of hepatoma cells by targeting miR-188-5p/HK2 axis. Ann Hepatol. https://doi.org/10.1016/j.aohep.2020.01.002

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no financial conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Du, J. & Gu, Z. Circ-PVT1/miR-106a-5p/HK2 axis regulates cell growth, metastasis and glycolytic metabolism of oral squamous cell carcinoma. Mol Cell Biochem 474, 147–158 (2020). https://doi.org/10.1007/s11010-020-03840-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03840-5

Keywords

Navigation