Skip to main content

Advertisement

Log in

Direct Downregulation of B-Cell Translocation Gene 3 by microRNA-93 Is Required for Desensitizing Esophageal Cancer to Radiotherapy

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Esophageal squamous carcinoma (ESC) is one of the most fatal malignancies worldwide with increasing occurrences yet poor outcome. MicroRNAs were reported to play roles in ESC.

Aims

We aimed to understand how miRNAs affect the radiotherapy resistance of ESC.

Methods

MicroRNA assays, real-time PCR, and Western blot were performed for expression analysis of miR-93 and BTG3. Luciferase activity assay was conducted with mutated B-cell translocation gene 3 (BTG3) 3′-UTR sequence in the 3′ end of luciferase sequence with miR-93 inhibitor. ESC cells were treated with irradiation (IR) and clonogenic assay was utilized to detect the cell viability. Human ESC xenograft mouse model was established and subjected to target IR treatment followed by tumor size analysis.

Results

MiR-93 was decreased and BTG3 was increased in ESC cells, with negative correlation of their expression in ESC tissues. MiR-93 directly targeted BTG3 3′-UTR by luciferase activity assay. Either miR-93 inhibition or BTG3 overexpression decreased radiation resistance. Furthermore, miR-93 inhibition suppressed radiation resistance through BTG3.

Conclusions

Direct downregulation of BTG3 by miR-93 is able to render ESC resistant to radiotherapy, and both BTG3 and miR-93 may potentially serve as clinical markers for ESC and contribute to the treatment of ESC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huang FL, Yu SJ. Esophageal cancer: risk factors, genetic association, and treatment. Asian J Surg. 2016. doi:10.1016/j.asjsur.2016.10.005.

    Google Scholar 

  2. Lin Y, Totsuka Y, Shan B, Wang C, et al. Esophageal cancer in high-risk areas of China: research progress and challenges. Ann Epidemiol. 2017;27:215–221.

    Article  PubMed  Google Scholar 

  3. Gou WF, Yang XF, Shen DF, Zhao S, et al. The roles of BTG3 expression in gastric cancer: a potential marker for carcinogenesis and a target molecule for gene therapy. Oncotarget. 2015;6:19841–19867.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Du Y, Liu P, Zang W, Wang Y, et al. BTG3 upregulation induces cell apoptosis and suppresses invasion in esophageal adenocarcinoma. Mol Cell Biochem. 2015;404:31–38.

    Article  CAS  PubMed  Google Scholar 

  5. Sharova E, Grassi A, Marcer A, Ruggero K, et al. A circulating miRNA assay as a first-line test for prostate cancer screening. Br J Cancer. 2016;114:1362–1366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bahrami A, Aledavoud SA, Anvari K, Hassanian SM, et al. The prognostic and therapeutic application of microRNAs in breast cancer: tissue and circulating microRNAs. J Cell Physiol. 2017. doi:10.1002/jcp.25813.

    Google Scholar 

  7. Gu J, Wang Y, Wu X. MicroRNA in the pathogenesis and prognosis of esophageal cancer. Curr Pharm Des. 2013;19:1292–1300.

    Article  CAS  PubMed  Google Scholar 

  8. Liu ZG, Jiang G, Tang J, Wang H, et al. c-Fos over-expression promotes radioresistance and predicts poor prognosis in malignant glioma. Oncotarget. 2016;7:65946–65956.

    PubMed  PubMed Central  Google Scholar 

  9. Zheng W, Skowron KB, Namm JP, Burnette B, et al. Combination of radiotherapy and vaccination overcomes checkpoint blockade resistance. Oncotarget. 2016;7:43039–43051.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nair DV, Reddy AG. Laboratory animal models for esophageal cancer. Vet World. 2016;9:1229–1232.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Crescenzi M, Persano L, Esposito G, Zulato E, et al. Vandetanib improves anti-tumor effects of L19mTNFalpha in xenograft models of esophageal cancer. Clin Cancer Res. 2011;17:447–458.

    Article  CAS  PubMed  Google Scholar 

  12. Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 2012;4:143–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hausser J, Zavolan M. Identification and consequences of miRNA-target interactions–beyond repression of gene expression. Nat Rev Genet. 2014;15:599–612.

    Article  CAS  PubMed  Google Scholar 

  14. Kohlhapp FJ, Mitra AK, Lengyel E, Peter ME. MicroRNAs as mediators and communicators between cancer cells and the tumor microenvironment. Oncogene. 2015;34:5857–5868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Paladini L, Fabris L, Bottai G, Raschioni C, et al. Targeting microRNAs as key modulators of tumor immune response. J Exp Clin Cancer Res. 2016;35:103.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fang L, Du WW, Yang W, Rutnam ZJ, et al. MiR-93 enhances angiogenesis and metastasis by targeting LATS2. Cell Cycle. 2012;11:4352–4365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dews M, Homayouni A, Yu D, Murphy D, et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet. 2006;38:1060–1065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ansari MH, Irani S, Edalat H, Amin R, Mohammadi Roushandeh A. Deregulation of miR-93 and miR-143 in human esophageal cancer. Tumour Biol. 2016;37:3097–3103.

    Article  CAS  PubMed  Google Scholar 

  19. Yoneda M, Suzuki T, Nakamura T, Ajima R, et al. Deficiency of antiproliferative family protein Ana correlates with development of lung adenocarcinoma. Cancer Sci. 2009;100:225–232.

    Article  CAS  PubMed  Google Scholar 

  20. Yamamoto N, Uzawa K, Yakushiji T, Shibahara T, et al. Analysis of the ANA gene as a candidate for the chromosome 21q oral cancer susceptibility locus. Br J Cancer. 2001;84:754–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin TY, Cheng YC, Yang HC, Lin WC, et al. Loss of the candidate tumor suppressor BTG3 triggers acute cellular senescence via the ERK-JMJD3-p16(INK4a) signaling axis. Oncogene. 2012;31:3287–3297.

    Article  CAS  PubMed  Google Scholar 

  22. Ren XL, Zhu XH, Li XM, Li YL, et al. Down-regulation of BTG3 promotes cell proliferation, migration and invasion and predicts survival in gastric cancer. J Cancer Res Clin Oncol. 2015;141:397–405.

    Article  CAS  PubMed  Google Scholar 

  23. Yu J, Zhang Y, Qi Z, Kurtycz D, et al. Methylation-mediated downregulation of the B-cell translocation gene 3 (BTG3) in breast cancer cells. Gene Expr. 2008;14:173–182.

    CAS  PubMed  Google Scholar 

  24. Majid S, Dar AA, Ahmad AE, Hirata H, et al. BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer. Carcinogenesis. 2009;30:662–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Majid S, Dar AA, Shahryari V, Hirata H, et al. Genistein reverses hypermethylation and induces active histone modifications in tumor suppressor gene B-Cell translocation gene 3 in prostate cancer. Cancer. 2010;116:66–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lv Z, Zou H, Peng K, Wang J, et al. The suppressive role and aberrent promoter methylation of BTG3 in the progression of hepatocellular carcinoma. PLoS One. 2013;8:e77473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li C, Ding C, Chen T, Chen J, et al. Micro ribonucleic acid-93 promotes proliferation and migration of esophageal squamous cell carcinoma by targeting disabled 2. Thorac Cancer. 2015;6:524–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Guo.

Ethics declarations

Conflict of interest

None.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 260 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, H., Zhang, S., Zhou, H. et al. Direct Downregulation of B-Cell Translocation Gene 3 by microRNA-93 Is Required for Desensitizing Esophageal Cancer to Radiotherapy. Dig Dis Sci 62, 1995–2003 (2017). https://doi.org/10.1007/s10620-017-4579-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-017-4579-x

Keywords

Navigation