Skip to main content

Advertisement

Log in

Deregulation of miR-93 and miR-143 in human esophageal cancer

  • Original Article
  • Published:
Tumor Biology

Abstract

Esophageal squamous cell carcinoma (ESCC) is the second and third most common malignancy in Iranian males and females, respectively. Treatment of ESCC is largely ineffective due to lack of detection at early stages of the disease. In recent years, miRNA, a small RNA molecule, has drawn much attention to researchers as a potential biomarker for esophageal cancer. miR-93 and miR-143 are two miRNA molecules reported to be frequently deregulated in various cancers, including prostate, stomach, cervix, and etc. The purpose of this study was to investigate the expression levels of these miRNAs and evaluate their diagnostic and therapeutic potential in esophageal squamous cell carcinoma. In this study, total RNA was extracted from 30 tumor tissues and 30 nontumor tissues of esophageal tumor margins, using RNX-plus solution. After validating the quality and quantity of total RNA, cDNAs of interest were synthesized using microRNA-specific cDNA Synthesis Kit. The expression level of miR-93 and miR-143 was evaluated using quantitative real-time PCR with miRNA-specific primers. Finally, the obtained data was analyzed by SPSS ver.20 software and paired t test was performed to observe the significance of difference between groups. The expression level of miR-93 was significantly increased and of miR-143 was significantly decreased in most of the examined tumor tissues, compared to nontumor tissues. Also, our findings did not detect correlation between mir-93 and mir-143 expressions in regard to stage and grade of the samples. These findings suggest that the deregulation of these miRNAs may play an important role in esophageal squamous cell carcinoma. Both miR-93 and miR-143 might be used as potential biomarkers in esophageal squamous cell carcinoma. However, more studies with large population of samples are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  2. Hwang H, Mendell J. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer. 2006;94(6):776–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thai T-H, Christiansen PA, Tsokos GC. Is there a link between dysregulated miRNA expression and disease? Discov Med. 2010;10(52):184–94.

    PubMed  Google Scholar 

  4. Roush SF, Slack FJ. Micromanagement: a role for microRNAs in mRNA stability. ACS Chem Biol. 2006;1(3):132–4.

    Article  CAS  PubMed  Google Scholar 

  5. Ross JS, Carlson JA, Brock G. miRNA: the new gene silencer. Am J Clin Pathol. 2007;128(5):830–6.

    Article  CAS  PubMed  Google Scholar 

  6. Vasudevan S. Posttranscriptional upregulation by microRNAs. Wiley Interdisciplinary Reviews: RNA. 2012;3(3):311–30.

    Article  CAS  PubMed  Google Scholar 

  7. Rajewsky N. microRNA target predictions in animals. Nat Genet. 2006;38:S8–13.

    Article  CAS  PubMed  Google Scholar 

  8. Calin GA et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101(9):2999–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lu M et al. An analysis of human microRNA and disease associations. PLoS One. 2008;3(10), e3420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jay C, Nemunaitis J, Chen P, Fulgham P, Tong AW. miRNA profiling for diagnosis and prognosis of human cancer. DNA Cell Biol. 2007;26(5):293–300.

  11. Tricoli JV, Jacobson JW. MicroRNA: potential for cancer detection, diagnosis, and prognosis. Cancer Res. 2007;67(10):4553–5.

    Article  CAS  PubMed  Google Scholar 

  12. Chiam K, et al. Circulating serum exosomal miRNAs as potential biomarkers for esophageal adenocarcinoma. J. Gastrointest. Surg. 2015:19(7):1208–15.

  13. Hu Z. Insight into microRNA regulation by analyzing the characteristics of their targets in humans. BMC Genomics. 2009;10(1):594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Raponi M et al. MicroRNA classifiers for predicting prognosis of squamous cell lung cancer. Cancer Res. 2009;69(14):5776–83.

    Article  CAS  PubMed  Google Scholar 

  15. Wang F, Zheng Z, Guo J, Ding X. Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol Oncol. 2010;119(3):586–93.

  16. Hu X et al. A microRNA expression signature for cervical cancer prognosis. Cancer Res. 2010;70(4):1441–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cho WC. MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int J Biochem Cell Biol. 2010;42(8):1273–81.

    Article  CAS  PubMed  Google Scholar 

  18. Liu J et al. MicroRNA-144 inhibits the metastasis of gastric cancer by targeting MET expression. J Exp Clin Cancer Res. 2015;34(1):35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wszolek MF, et al. A MicroRNA expression profile defining the invasive bladder tumor phenotype. In Urologic Oncology: Seminars and Original Investigations. 2011;29(6):794–801.

  20. Gao W, Yu Y, Cao H, Shen H, Li X, Pan S, Shu Y. Deregulated expression of miR-21, miR-143 and miR-181a in non small cell lung cancer is related to clinicopathologic characteristics or patient prognosis. Biomed Pharmacother. 2010;64(6):399–408.

  21. Vychytilova-Faltejskova P et al. MiR-21, miR-34a, miR-198 and miR-217 as diagnostic and prognostic biomarkers for chronic pancreatitis and pancreatic ductal adenocarcinoma. Diagn Pathol. 2015;10(1):38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lotterman CD, Kent OA, Mendell JT. Functional integration of microRNAs into oncogenic and tumor suppressor pathways. Cell Cycle. 2008;7(16):2493–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ivanovska I et al. MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol. 2008;28(7):2167–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu B-L et al. MiRNA profile in esophageal squamous cell carcinoma: downregulation of miR-143 and miR-145. World J Gastroenterol. 2011;17(1):79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nie J, et al. miR-34a inhibits the migration and invasion of esophageal squamous cell carcinoma by targeting Yin Yang-1. Oncol. Rep. 2015;34(1):311–7.

  26. Pagliuca A et al. Analysis of the combined action of miR-143 and miR-145 on oncogenic pathways in colorectal cancer cells reveals a coordinate program of gene repression. Oncogene. 2013;32(40):4806–13.

    Article  CAS  PubMed  Google Scholar 

  27. Schou JV et al. miR-345 in metastatic colorectal cancer: a non-invasive biomarker for clinical outcome in non-KRAS mutant patients treated with 3rd line cetuximab and irinotecan. PLoS One. 2014;9(6):e99886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chu H, et al. A functional variant in miR-143 promoter contributes to prostate cancer risk. Arch. Toxicol. 2014. doi:10.1007/s00204-014-1396-2.

  29. Xu B et al. miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol Cell Biochem. 2011;350(1–2):207–13.

    Article  CAS  PubMed  Google Scholar 

  30. Noguchi S et al. MicroRNA-143 functions as a tumor suppressor in human bladder cancer T24 cells. Cancer Lett. 2011;307(2):211–20.

    Article  CAS  PubMed  Google Scholar 

  31. Chen X et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene. 2009;28(10):1385–92.

    Article  CAS  PubMed  Google Scholar 

  32. Cho WC. MicroRNAs in cancer—from research to therapy. Biochim Biophys Acta, Biophys Incl Photsynth Rev Can. 2010;1805(2):209–17.

    CAS  Google Scholar 

  33. Kojima S et al. The tumor-suppressive microRNA-143/145 cluster inhibits cell migration and invasion by targeting GOLM1 in prostate cancer. J Hum Genet. 2014;59(2):78–87.

    Article  CAS  PubMed  Google Scholar 

  34. Goto Y, Kurozumi A, Enokida H, Ichikawa T, Seki N. Functional significance of aberrantly expressed microRNAs in prostate cancer. Int. J. Urol. 2015;22(3):242–52

  35. Clapé C, et al. miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLos One. 2009;26;4(10):e7542.

  36. Kim YK, Kim VN. Processing of intronic microRNAs. EMBO J. 2007;26(3):775–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin S-L, Ying S-Y. Gene silencing in vitro and in vivo using intronic microRNAs, in MicroRNA. Protocols. 2013;342:295–312.

  38. Fang L et al. MiR-93 enhances angiogenesis and metastasis by targeting LATS2. Cell Cycle. 2012;11(23):4352–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dews M et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet. 2006;38(9):1060–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Petrocca F et al. E2F1-regulated microRNAs impair TGFβ-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell. 2008;13(3):272–86.

    Article  CAS  PubMed  Google Scholar 

  41. Yu D, Shin HS, Lee YS, Lee YC. miR-106b modulates cancer stem cell characteristics through TGF-β/Smad signaling in CD44-positive gastric cancer cells. Lab. Investig. 2014;94(12):1370–81.

  42. Enzinger PC, Mayer RJ. Esophageal cancer. N Engl J Med. 2003;349(23):2241–52.

    Article  CAS  PubMed  Google Scholar 

  43. Zheng S, Vuitton L, Sheyhidin I, Vuitton DA, Zhang Y, Lu X. Northwestern China: a place to learn more on oesophageal cancer. Part one: behavioural and environmental risk factors. Eur J Gastroenterol Hepatol. 2010;22(8):917–25.

  44. Lin Y et al. Epidemiology of esophageal cancer in Japan and China. J Epidemiol. 2013;23(4):233.

    Article  PubMed  Google Scholar 

  45. Kamangar F, Malekzadeh R, Dawsey SM, Saidi F. Esophageal cancer in Northeastern Iran: a review. Arch Iran Med. 2007;10(1):70–82.

  46. Sadjadi A, Marjani H, Semnani SH, Nasseri-Moghaddam S. Esophageal cancer in Iran: a review. Middle East J Cancer. 2010;1(1):5–14.

  47. Zehetner J et al. Endoscopic resection and ablation versus esophagectomy for high-grade dysplasia and intramucosal adenocarcinoma. J Thorac Cardiovasc Surg. 2011;141(1):39–47.

    Article  PubMed  Google Scholar 

  48. Purwar P et al. Management of esophageal small cell carcinoma. Ann Thorac Surg. 2015;99(4):1488.

    Article  PubMed  Google Scholar 

  49. Roth MJ et al. Cytologic detection of esophageal squamous cell carcinoma and precursor lesions using balloon and sponge samplers in asymptomatic adults in Linxian. China Cancer. 1997;80(11):2047–59.

    Article  CAS  PubMed  Google Scholar 

  50. Eslick GD. Epidemiology of esophageal cancer. Gastroenterol Clin North Am. 2009;38(1):17–25.

    Article  PubMed  Google Scholar 

  51. Stewart BW, Kleihues P, I.A.f.R.o. Cancer. World cancer report. Vol. 57. Lyon: IARC press; 2003.

    Google Scholar 

  52. Nie J, et al. miR-34a inhibits the migration and invasion of esophageal squamous cell carcinoma by targeting Yin Yang-1. Oncol. Rep. 2015;34(1):311–7.

  53. Ilhan-Mutlu A, et al. microRNA-21 Expression is elevated in esophageal adenocarcinoma after neoadjuvant chemotherapy. Cancer Investig. 2015;33(6):246–50.

  54. Feber A et al. MicroRNA expression profiles of esophageal cancer. J Thorac Cardiovasc Surg. 2008;135(2):255–60.

    Article  CAS  PubMed  Google Scholar 

  55. Li G et al. Increased expression of miR-93 is associated with poor prognosis in head and neck squamous cell carcinoma. Tumor Biol. 2015;36(5):3949–56.

    Article  CAS  Google Scholar 

  56. Chen H et al. MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. Br J Cancer. 2009;100(6):1002–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu L et al. miR-143 is downregulated in cervical cancer and promotes apoptosis and inhibits tumor formation by targeting Bcl-2. Mol Med Rep. 2012;5(3):753–60.

    CAS  PubMed  Google Scholar 

  58. Kano M et al. miR‐145, miR‐133a and miR‐133b: tumor‐suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer. 2010;127(12):2804–14.

    Article  CAS  PubMed  Google Scholar 

  59. Gu J, Wang Y, Wu X. MicroRNA in the pathogenesis and prognosis of esophageal cancer. Curr Pharm Des. 2013;19(7):1292–300.

    CAS  PubMed  Google Scholar 

  60. Zhang H, Cai X, Wang Y, Tang H, Tong D, Ji F. microRNA-143, down-regulated in osteosarcoma, promotes apoptosis and suppresses tumorigenicity by targeting Bcl-2. Oncol Rep. 2010;24(5):1363–9.

  61. Zhang J, Sun Q, Zhang Z, Ge S, Han ZG, Chen WT. Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the MDM2-p53 feedback loop. Oncogene. 2013;32(1):61–9.

  62. Leek RD, Kaklamanis L, Pezzella F, Gatter KC, Harris AL. bcl-2 in normal human breast and carcinoma, association with oestrogen receptor-positive, epidermal growth factor receptor-negative tumours and in situ cancer. Br J Cancer. 1994;69(1):135.

  63. Haldar S, Negrini M, Monne M, Sabbioni S, Croce CM. Down-regulation of bcl-2 by p53 in breast cancer cells. Cancer Res. 1994;54(8):2095–7.

  64. Henriksen R, Wilander E, Oberg K. Expression and prognostic significance of Bcl-2 in ovarian tumours. Br J Cancer. 1995;72(5):1324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hemann M, Lowe S. The p53–Bcl-2 connection. Cell Death Differ. 2006;13(8):1256–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mattie MD et al. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer. 2006;5(1):24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Luthra R et al. MicroRNA-196a targets annexin A1: a microRNA-mediated mechanism of annexin A1 downregulation in cancers. Oncogene. 2008;27(52):6667–78.

    Article  CAS  PubMed  Google Scholar 

  68. Maru DM et al. MicroRNA-196a is a potential marker of progression during Barrett's metaplasia-dysplasia-invasive adenocarcinoma sequence in esophagus. Am J Pathol. 2009;174(5):1940–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lardizábal MN et al. Reference genes for real-time PCR quantification of microRNAs and messenger RNAs in rat models of hepatotoxicity. PLoS One. 2012;7(5):e36323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaneh Mohammadi Roushandeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, M.H., Irani, S., Edalat, H. et al. Deregulation of miR-93 and miR-143 in human esophageal cancer. Tumor Biol. 37, 3097–3103 (2016). https://doi.org/10.1007/s13277-015-3987-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3987-9

Keywords

Navigation