Skip to main content

Advertisement

Log in

Population, Epidemiological, and Functional Genetics of Gastric Cancer Candidate Genes in Peruvians with Predominant Amerindian Ancestry

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Gastric adenocarcinoma is associated with chronic infection by Helicobacter pylori and with the host inflammatory response triggered by it, with substantial inter-person variation in the immune response profile due to host genetic factors.

Aim

To investigate the diversity of the proinflammatory genes IL8, its receptors and PTGS2 in Amerindians; to test whether candidate SNPs in these genes are associated with gastric cancer in an admixed population with high Amerindian ancestry from Lima, Peru; and to assess whether an IL8RB promoter-derived haplotype affects gene expression.

Methods

We performed a Sanger-resequencing population survey, a candidate-gene association study (220 cases, 288 controls) and meta-analyses. We also performed an in vitro validation by a reporter gene assay of IL8RB promoter.

Results

The diversity of the promoter of studied genes in Native Americans is similar to Europeans. Although an association between candidate SNPs and gastric cancer was not found in Peruvians, trend in our data is consistent with meta-analyses results that suggest PTGS2-rs689466-A is associated with H. pylori-associated gastric cancer in East Asia. IL8RB promoter-derived haplotype (rs3890158-A/rs4674258-T), common in Peruvians, was up-regulated by TNF-α unlike the ancestral haplotype (rs3890158-G/rs4674258-C). Bioinformatics analysis suggests that this effect stemmed from creation of a binding site for the FOXO3 transcription factor by rs3890158G>A.

Conclusions

Our updated meta-analysis reinforces the role of PTGS2-rs689466-A in gastric cancer in Asians, although more studies that control for ancestry are necessary to clarify its role in Latin Americans. Finally, we suggest that IL8RB-rs3890158G>A is a cis-regulatory SNP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram II, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2014;136:E359–E386.

    Article  PubMed  CAS  Google Scholar 

  2. Porras C, Nodora J, Sexton R, et al. Epidemiology of Helicobacter pylori infection in six Latin American countries (SWOG Trial S0701). Cancer Causes Control. 2013;24:209–215.

    Article  PubMed  PubMed Central  Google Scholar 

  3. IARC. Monographs on the evaluation of carcinogenic risks to humans volume 61 schistosomes, liver flukes and Helicobacter pylori. World Heal Organ Int Agency Res Cancer. 1994;61:177.

    Google Scholar 

  4. Wang F, Meng W, Wang B, Qiao L. Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett. 2014;345:196–202.

    Article  PubMed  CAS  Google Scholar 

  5. Suzuki M, Mimuro H, Kiga K, et al. Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell Host Microbe. 2009;5:23–34.

    Article  PubMed  CAS  Google Scholar 

  6. Lamb A, Chen L-F. Role of the Helicobacter pylori-induced inflammatory response in the development of gastric cancer. J Cell Biochem. 2013;114:491–497.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Kitadai Y, Haruma K, Mukaida N, et al. Regulation of disease-progression genes in human gastric carcinoma cells by interleukin 8. Clin Cancer Res. 2000;6:2735–2740.

    PubMed  CAS  Google Scholar 

  8. Sugimoto M, Yamaoka Y, Furuta T. Influence of interleukin polymorphisms on development of gastric cancer and peptic ulcer. World J Gastroenterol. 2010;16:1188–1200.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Recavarren-Arce S, León-Barúa R, Cok J, et al. Helicobacter pylori and progressive gastric pathology that predisposes to gastric cancer. Scand J Gastroenterol Suppl. 1991;181:51–57.

    Article  PubMed  CAS  Google Scholar 

  10. Correa P. Human gastric carcinogenesis: a multistep and multifactorial process—First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res. 1992;52:6735–6740.

    PubMed  CAS  Google Scholar 

  11. Shanks A, El-omar EM. Helicobacter pylori infection, host genetics and gastric cancer. J Dig Dis. 2009;10:157–164.

    Article  PubMed  CAS  Google Scholar 

  12. Gehmert S, Velapatiño B, Herrera P, et al. Interleukin-1 beta single-nucleotide polymorphism’s C allele is associated with elevated risk of gastric cancer in Helicobacter pylori-infected Peruvians. Am J Trop Med Hyg. 2009;81:804–810.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Pereira L, Zamudio R, Soares-Souza G, et al. Socioeconomic and nutritional factors account for the association of gastric cancer with Amerindian ancestry in a Latin American admixed population. PLoS One. 2012;7:e41200.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Pastinen T. Genome-wide allele-specific analysis: insights into regulatory variation. Nat Rev Genet. 2010;11:533–538.

    Article  PubMed  CAS  Google Scholar 

  15. Scliar MO, Soares-Souza GB, Chevitarese J, et al. The population genetics of Quechuas, the largest native South American group: autosomal sequences, SNPs, and microsatellites evidence high level of diversity. Am J Phys Anthropol. 2012;147:443–451.

    Article  PubMed  Google Scholar 

  16. Tarazona-Santos E, Carvalho-Silva DR, Pettener D, et al. Genetic differentiation in South Amerindians is related to environmental and cultural diversity: evidence from the Y chromosome. Am J Hum Genet. 2001;68:1485–1496.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Machado M, Magalhães WC, Sene A, et al. Phred-Phrap package to analyses tools: a pipeline to facilitate population genetics re-sequencing studies. Investig Genet. 2011;2:1–7.

    Article  CAS  Google Scholar 

  18. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics. 2003;19:2496–2497.

    Article  PubMed  CAS  Google Scholar 

  19. Stephens M, Donnelly P. A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet. 2003;73:1162–1169.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–265.

    Article  PubMed  CAS  Google Scholar 

  21. Yong AG, Pearce S. A beginner’s guide to factor analysis : focusing on exploratory factor analysis. Tutor Quant Methods Psychol. 2013;9:79–94.

    Google Scholar 

  22. Yaeger R, Avila-Bront A, Abdul K, et al. Comparing genetic ancestry and self-described race in african americans born in the United States and in Africa. Cancer Epidemiol Biomark Prev. 2008;17:1329–1338.

    Article  CAS  Google Scholar 

  23. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–1664.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. González JR, Armengol L, Solé X, et al. SNPassoc: an R package to perform whole genome association studies. Bioinformatics. 2007;23:644–645.

    PubMed  Google Scholar 

  25. Cochran WG. The combination of estimates from different experiments. Int Biom Soc. 1954;10:101–129.

    Google Scholar 

  26. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–1558.

    Article  PubMed  Google Scholar 

  27. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–634.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Matys V. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 2003;31:374–378.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Liu F, Pan K, Zhang X, et al. Genetic variants in cyclooxygenase-2: expression and risk of gastric cancer and its precursors in a Chinese population. Gastroenterology. 2006;130:1975–1984.

    Article  PubMed  CAS  Google Scholar 

  30. Li Y, Dai L, Zhang J, et al. Cyclooxygenase-2 polymorphisms and the risk of gastric cancer in various degrees of relationship in the Chinese Han population. Oncol Lett. 2012;3:107–112.

    PubMed  CAS  PubMed Central  Google Scholar 

  31. Zhang X, Zhong R, Zhang Z, et al. Interaction of cyclooxygenase-2 promoter polymorphisms with Helicobacter pylori infection and risk of gastric cancer. Mol Carcinog. 2011;50:876–883.

    Article  PubMed  CAS  Google Scholar 

  32. Chuntharapai A, Kim KJ. Regulation of the expression of IL-8 receptor A/B by IL-8: possible functions of each receptor. J Immunol. 1995;155:2587–2594.

    PubMed  CAS  Google Scholar 

  33. Galanter JM, Fernandez-Lopez JC, Gignoux CR, et al. Development of a panel of genome-wide ancestry informative markers to study admixture throughout the Americas. PLoS Genet. 2012;8:e1002554.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Tabassam FH, Graham DY, Yamaoka Y. Helicobacter pylori-associated regulation of forkhead transcription factors FoxO1/3a in human gastric cells. Helicobacter. 2012;17:193–202.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. DaSilva L, Kirken RA, Taub DD, et al. Molecular cloning of FKHRL1P2, a member of the developmentally regulated fork head domain transcription factor family. Gene. 1998;221:135–142.

    Article  PubMed  CAS  Google Scholar 

  36. Anderson MJ, Viars CS, Czekay S, Cavenee WK, Arden KC. Cloning and characterization of three human forkhead genes that comprise an FKHR-like gene subfamily. Genomics. 1998;47:187–199.

    Article  PubMed  CAS  Google Scholar 

  37. Hillion J, Le Coniat M, Jonveaux P, Berger R, Bernard OA. AF6q21, a novel partner of the MLL gene in t(6;11)(q21;q23), defines a forkhead transcriptional factor subfamily. Blood. 1997;90:3714–3719.

    PubMed  CAS  Google Scholar 

  38. Myatt SS. Lam EW-F. The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer. 2007;7:847–859.

    Article  PubMed  CAS  Google Scholar 

  39. Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer. 2009;9:361–371.

    Article  PubMed  CAS  Google Scholar 

  40. Waters JP, Pober JS, Bradley JR. Tumour necrosis factor and cancer. J Pathol. 2013;230:241–248.

    Article  PubMed  CAS  Google Scholar 

  41. Bhattacharya C, Samanta S, Gupta S, Samanta AK. A Ca2+-dependent autoregulation of lipopolysaccharide-induced IL-8 receptor expression in human polymorphonuclear neutrophils. J Immunol. 1997;158:1293–1301.

    PubMed  CAS  Google Scholar 

  42. Chu W-M. Tumor necrosis factor. Cancer Lett. 2013;328:222–225.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Snoeks L, Weber CR, Wasland K, et al. Tumor suppressor FOXO3 participates in the regulation of intestinal inflammation. Lab Invest. 2009;89:1053–1062.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Cheng W-L, Wang C-S, Huang Y-H, Tsai M-M, Liang Y, Lin K-H. Overexpression of CXCL1 and its receptor CXCR2 promote tumor invasion in gastric cancer. Ann Oncol. 2011;22:2267–2276.

    Article  PubMed  Google Scholar 

  45. De Oliveira JG, Rossi AFT, Nizato DM, Miyasaki K, Silva AE. Profiles of gene polymorphisms in cytokines and Toll-like receptors with higher risk for gastric cancer. Dig Dis Sci. 2013;58:978–988.

    Article  PubMed  CAS  Google Scholar 

  46. Tajima F. DNA polymorphism in a subdivided population: the expected number of segregating sites in the two-subpopulation model. Genetics. 1989;123:229–240.

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Watterson GA. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975;7:256–276.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Gifone Rocha, Denise Carmona, Carolina Gomes, Gilderlanio S Araujo, Giordano Soares Souza, Moara Machado, Mateus H Gouveia for discussions on different parts of the project and for technical help.

Funding

Fogarty International Center and National Cancer Institute (5R01TW007894) funded this study. The study and its participants also received funding and fellowships from the following Brazilian agencies: Brazilian National Research Council (CNPq), Ministry of Education (CAPES), Ministry of Health (PNPD-Saúde Program), and the Minas Gerais State Research Agency (FAPEMIG). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda S. G. Kehdy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Roxana Zamudio and Latife Pereira have equally contributed to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3299 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamudio, R., Pereira, L., Rocha, C.D. et al. Population, Epidemiological, and Functional Genetics of Gastric Cancer Candidate Genes in Peruvians with Predominant Amerindian Ancestry. Dig Dis Sci 61, 107–116 (2016). https://doi.org/10.1007/s10620-015-3859-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-3859-6

Keywords

Navigation