Skip to main content

Advertisement

Log in

Recent Advances in Cirrhotic Cardiomyopathy

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Cirrhotic cardiomyopathy, a cardiac dysfunction presented in patients with cirrhosis, represents a recently recognized clinical entity. It is characterized by altered diastolic relaxation, impaired contractility, and electrophysiological abnormalities, in particular prolongation of the QT interval. Several mechanisms seem to be involved in the pathogenesis of cirrhotic cardiomyopathy, including impaired function of beta-receptors, altered transmembrane currents, and overproduction of cardiodepressant factors, like nitric oxide, tumor necrosis factor α, and endogenous cannabinoids. Diastolic dysfunction is the first manifestation of cirrhotic cardiomyopathy and reflects the increased stiffness of the cardiac mass, which leads to delayed left ventricular filling. On the other hand, systolic incompetence is presented later, is usually unmasked during pharmacological or physical stress, and predisposes to the development of hepatorenal syndrome. The prolongation of QT is found in about 50 % of cirrhotic patients, but rarely leads to fatal arrhythmias. Cirrhotics with blunted cardiac function seem to have poorer survival rates compared to those without, and the risk is particularly increased during the insertion of transjugular intrahepatic portosystemic shunt or liver transplantation. Till now, there is no specific treatment for the management of cirrhotic cardiomyopathy. New agents, targeting to its pathogenetical mechanisms, may play some role as future therapeutic options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HRS:

Hepatorenal syndrome

CC:

Cirrhotic cardiomyopathy

TIPS:

Transjugular intrahepatic portosystemic shunt

NO:

Nitric oxide

TNF-α:

Tumor necrosis α

IL-1 β:

Interleukin 1 β

iNOs:

Inducible nitric oxide synthetase

l-NAME:

l-Nitro-arginine methyl ester

BDL:

Bile duct ligation

CB1:

Cannabinoid 1

LBP:

Lipopolysaccharide binding protein

DD:

Diastolic dysfunction

TDI:

Tissue doppler imaging

LT:

Liver transplantation

CO:

Cardiac output

EF:

Ejection fraction

SD:

Systolic dysfunction

HR:

Heart rate

CI:

Cardiac index

SBP:

Spontaneous bacterial peritonitis

BNP:

Brain natriuretic peptide

HVPG:

Hepatic venous pressure gradient

MAP:

Mean arterial pressure

HSA:

Human serum albumin

NF-κB:

Nuclear factor kappa B

EPO:

Erythropoietin

References

  1. Schrier RW, Arroyo V, Bernardi M, Epstein M, Henriksen JH, Rode’s J. Peripheral artery vasodilatation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology. 1988;5:1151–1157.

    Google Scholar 

  2. Iwakiri Y, Groszmann RJ. The hyperdynamic circulation of chronic liver diseases: From the patient to the molecule. Hepatology. 2006;43:S121–S131.157.

  3. Salermo F, Cazzaniga M, Gobbo G. Pharmacological treatment of hepatorenal syndrome: a note of optimism. J Hepatol. 2007;47:729–731.

    Google Scholar 

  4. Moller S, Henriksen JH. The systemic circulation in cirrhosis. In: Gines P, Arroyo V, Rodes J, Schrier RW, eds. Ascites and renal dysfunction in liver disease. 2nd ed. Malden: Blackwell; 2005:139–155.

    Google Scholar 

  5. Ruiz-del-Arbol L, Monescillo A, Arocena C, et al. Circulatory function and hepatorenal syndrome in cirrhosis. Hepatology. 2005;42:439–447.

    CAS  PubMed  Google Scholar 

  6. Moller S, Henriksen JH. Cirrhotic cardiomyopathy. J Hepatol. 2010;53:179–190.

    PubMed  Google Scholar 

  7. Alqahtani SA, Fouad TR, Lee SS. Cirrhotic cardiomyopathy. Semin Liver Dis. 2008;28:59–69.

    CAS  PubMed  Google Scholar 

  8. Zambruni A, Trevisani F, Caraceni P, Bernardi M. Cardiac electrophysiological abnormalities in patients with cirrhosis. J Hepatol. 2006;44:994–1002.

    CAS  PubMed  Google Scholar 

  9. Bernardi M, Calandra S, Colantoni A, et al. Q-T interval prolongation in cirrhosis: prevalence, relationship with severity, and etiology of the disease and possible pathogenetic factors. Hepatology. 1998;27:28–34.

    CAS  PubMed  Google Scholar 

  10. Rabie RN, Cazzaniga M, Salermo F, Wong F. The use of E/A ratio as a predictor of outcome in cirrhotic patients treated with transjugular intrahepatic porto-systemic shunt. Am J Gastroenterol. 2009;104:2458–2466.

    PubMed  Google Scholar 

  11. Trevisani F, Sica G, Mainqua P, et al. Autonomic dysfunction and hyperdynamic circulation in cirrhosis with ascites. Hepatology. 1999;30:1387–1392.

    CAS  PubMed  Google Scholar 

  12. Dumcke CW, Moller S. Autonomic dysfunction in cirrhosis and portal hypertension. Scand J Clin Lab Invest. 2008;68:437–447.

  13. Lee SS, Marty J, Mantz J, Samain E, Braillon A, Lebrec D. Desensitization of myocardial beta-adrenergic receptors in cirrhotic rats. Hepatology. 1990;12:481–485.

    CAS  PubMed  Google Scholar 

  14. Hausdorff WP, Caron MG, Lefkowitz RJ. Turning of the signal: desensitization of β-adrenergic receptor function. FASEB J. 1990;4:2881–2889.

    CAS  PubMed  Google Scholar 

  15. Ma Z, Miyamoto A, Lee SS. Role of altered beta-adrenoceptor signal transduction in the pathogenesis of cirrhotic cardiomyopathy in rats. Gastroenterology. 1996;110:1191–1198.

    CAS  PubMed  Google Scholar 

  16. Ma Z, Lee SS, Meddings JB. Effects of altered cardiac membrane fluidity on beta-adrenergic receptor signalling in rats with cirrhotic cardiomyopathy. J Hepatol. 1997;26:904–912.

    CAS  PubMed  Google Scholar 

  17. Ma Z, Meddings JB, Lee SS. Membrane physical properties determine cardiac b-adrenergic receptor function in cirrhotic rats. Am J Physiol. 1994;267:G87–G93.

    CAS  PubMed  Google Scholar 

  18. Ortiz MC, Fortepiani LA, Martinez C, Atucha NM, Garcia-Estan J. Vascular hyporesponsiveness in aortic rings from cirrhotic rats: role of nitric oxide and endothelium. Clin Sci (Lond). 1996;91:733–738.

    CAS  Google Scholar 

  19. Ebrahimi F, Tavacoli S, Hairasouliha AR, et al. Involvement of endogenous opioid peptides and nitric oxide in the blunted chronotropic and inotropic responses to beta-adrenergic stimulation in cirrhotic rats. Fundam Clin Pharmacol. 2006;20:461–471.

    CAS  PubMed  Google Scholar 

  20. Hare JM, Colucci WS. Role of nitric oxide in the regulation of myocardial function. Prog Cardiovasc Dis. 1995;38:155–166.

    CAS  PubMed  Google Scholar 

  21. Kelly RA, Balligand JL, Smith TW. Nitric oxide and cardiac function. Circ Res. 1996;79:363–380.

    CAS  PubMed  Google Scholar 

  22. Liu H, Ma Z, Lee SS. Contribution of nitric oxide to the pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated rats. Gastroenterology. 2000;118:937–944.

    CAS  PubMed  Google Scholar 

  23. Yang YY, Liu H, Nam SW, Kunos G, Lee SS. Mechanisms of TNFα-induced cardiac dysfunction in cholestatic bile duct-ligated mice: interaction between TNFα and endocannabinoids. J Hepatol. 2010;53:298–306.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Gaskari SE, Liu H, Moezi L, et al. Role of endocannabinoids in the pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated rats. Br J Pharmacol. 2005;146:315–323.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Gebremedhin D, Lange AR, Campbell WB, Hillard CJ, Harder DR. Cannabinoid CB1 receptor of cat cerebral arterial muscle functions to inhibit L-type Ca2+ channel current. Am J Physiol. 1999;276:H2085–H2093.

    CAS  PubMed  Google Scholar 

  26. Howlett AC, Bidaut-Russell M, Devane WA, et al. The cannabinoid receptor: biochemical, anatomical and behavioral characterization. Trends Neurosci. 1990;13:420–423.

    CAS  PubMed  Google Scholar 

  27. Batkai S, Mukhopadhyay P, Harvey-White J, et al. Endocannabinoids acting at CB1 receptors mediate the cardiac contractile dysfunction in vivo in cirrhotic rats. Am J Physiol Heart Circ Physiol. 2007;293:H1689–H1695.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Varga K, Wagner JA, Bridgen DT, Kunos G. Platelet and macrophages derived endogenous cannabinoid are involved in endotoxine induced hypotension. FASEB J. 1998;12:1035–1044.

    CAS  PubMed  Google Scholar 

  29. Maccarrone M, De Petrocellis L, Bari M, et al. Lipopolysaccharide downregulates fatty acid amide hydrolase expression and increases anandamide levels in human peripheral lymphocytes. Arch Biochem Biophys. 2001;393:321–328.

    CAS  PubMed  Google Scholar 

  30. Liu J, Batkai S, Pacher P, et al. Lipopolysaccharide induces anandamide synthesis in macrophages via CD14/MARK/phosphoinositide 3-kinase/NK-kappaB independently of platelet-activating factor. J Biol Chem. 2003;278:45034–45039.

    CAS  PubMed  Google Scholar 

  31. Maccarrone M, Bari M, Battista N, Finazzi-Agro A. Endocannabinoid degradation, endotoxic shock and inflammation. Curr Drug Targets Inflamm Allergy. 2002;1:53–63.

    CAS  PubMed  Google Scholar 

  32. Rozenberg S, Besse S, Brisson H, et al. Endotoxin-induced myocardial dysfunction in senescent rats. Crit Care. 2006;10:R124.

    PubMed Central  PubMed  Google Scholar 

  33. Karagiannakis DS, Vlachogiannakos J, Anastasiadis G, Vafiadis-Zouboulis I, Ladas SD. Frequency and severity of cirrhotic cardiomyopathy and its possible relationship with bacterial endotoxaemia. Dig Dis Sci. 2013;58:3029–3036.

    CAS  PubMed  Google Scholar 

  34. Jacob G, Nassar N, Hayam G, et al. Cardiac function and responsiveness to β-adrenoceptor agonists in rats with obstructive jaundice. Am J Physiol. 1993;265:G314–G320.

    CAS  PubMed  Google Scholar 

  35. Zavecz JH, Battarbee HD. The role of lipophilic bile acids in the development of cirrhotic cardiomyopathy. Cardiovasc Toxicil. 2010;10:117–129.

    CAS  Google Scholar 

  36. Glenn TK, Honar H, Liu H, ter Keurs HEDJ, Lee SS. Role of cardiac myofilament proteins titin and collagen in the pathogenesis of diastolic dysfunction in cirrhotic rats. J Hepatol. 2011;55:1249–1255.

    CAS  PubMed  Google Scholar 

  37. Ward CA, Ma Z, Lee SS, Giles WR. Potassium currents in atrial and ventricular myocytes from a rat model of cirrhosis. Am J Physiol. 1997;273:G537–G544.

    CAS  PubMed  Google Scholar 

  38. Ward CA, Liu H, Lee SS. Altered cellular calcium regulatory systems in a rat model of cirrhotic cardiomyopathy. Gastroenterology. 2001;121:1209–1218.

    CAS  PubMed  Google Scholar 

  39. Moller S, Henriksen JH. Cardiovascular dysfunction in cirrhosis. Pathophysiological evidence of a cirrhotic cardiomyopathy. Scand J Gastroenterol. 2001;36:785–794.

    CAS  PubMed  Google Scholar 

  40. Pozzi M, Redaelli E, Ratti L, et al. Time-course of diastolic dysfunction in different stages of chronic HCV related liver diseases. Minerva Gastroenterol Dietol. 2005;51:179–186.

    CAS  PubMed  Google Scholar 

  41. Torregrosa M, Aguade S, Dos L, et al. Cardiac alterations in cirrhosis: reversibility after liver transplantation. J Hepatol. 2005;42:68–74.

    PubMed  Google Scholar 

  42. Finucci G, Desideri A, Sacerdoti D, et al. Left ventricular diastolic function in liver cirrhosis. Scand J Gastroenterol. 1996;31:279–284.

    CAS  PubMed  Google Scholar 

  43. Pozzi M, Carugo S, Boari G, et al. Evidence of functional and structural cardiac abnormalities in cirrhotic patients with and without ascites. Hepatology. 1997;26:1131–1137.

    CAS  PubMed  Google Scholar 

  44. Wong F, Villamil A, Merli M, et al. Prevalence of diastolic dysfunction in cirrhosis, and its clinical significance. Hepatology.. 2011;54:475A–476A.

    Google Scholar 

  45. Ho CY, Solomon SD. Clinician’s guide to tissue Doppler imaging. Circulation. 2006;113:e396–e398.

    PubMed  Google Scholar 

  46. Kazankov K, Holland-Fischer P, Andersen NH, et al. Resting myocardial dysfunction in cirrhosis quantified by tissue Doppler imaging. Liver Int. 2011;31:534–540.

    PubMed  Google Scholar 

  47. Andersen UB, Moller S, Bendtsen F, Henriksen JH. Cardiac output determined by echocardiography in patients with cirrhosis: comparison with the indicator dilution technique. Eur J Gastroenterol Hepatol. 2003;15:503–507.

    PubMed  Google Scholar 

  48. Nagueh SF, Appleton CP, Gillebert TC, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr. 2009;22:107–133.

    PubMed  Google Scholar 

  49. Sampaio F, Pimenta J, Bettencourt N, et al. Systolic and diastolic dysfunction in cirrhosis: a tissue-Doppler and speckle tracking echocardiography study. Liver int. 2013;33:1158–1165.

    CAS  PubMed  Google Scholar 

  50. Ruiz-del Arbol L, Achecar L, Serradilla R, et al. Diastolic dysfunction is a predictor of poor outcomes in patients with cirrhosis, portal hypertension and a normal creatinine. Hepatology. 2013;58:1732–1741.

    CAS  PubMed  Google Scholar 

  51. Merli M, Valeriano V, Funaro S, et al. Modifications of cardiac function in cirrhotic patients treated with transjugular intrahepatic portosystemic shunt (TIPS). Am J Gastroenterol. 2002;97:142–148.

    PubMed  Google Scholar 

  52. Kovacs A, Schepke M, Heller J, Schild HH, Flacke S. Short-term effects of transjugular intrahepatic shunt on cardiac function assessed by cardiac MRI: preliminary results. Cardiovasc Intervent Radiol. 2010;33:290–296.

    CAS  PubMed  Google Scholar 

  53. Cazzaniga M, Salerno F, Pagnozzi G, et al. Diastolic dysfunction is associated with poor survival in cirrhotic patients with transjugular intrahepatic portosystemic shunt. Gut. 2007;56:869–875.

    PubMed Central  PubMed  Google Scholar 

  54. Ripoll C, Catalina MV, Yotti R, et al. Cardiac dysfunction during liver transplantation: incidence and preoperative predictors. Transplantation. 2008;85:1766–1772.

    PubMed  Google Scholar 

  55. Nazar A, Guevara M, Sitges M, et al. Left ventricular function assessed by echocardiography in cirrhosis: relationship to systemic hemodynamics and renal dysfunction. J Hepatol. 2013;58:51–57.

    PubMed  Google Scholar 

  56. Alexopoulou A, Papatheodoridis G, Pouriki S, et al. Diastolic myocardial dysfunction does not affect survival in patients with cirrhosis. Transpl Int. 2012;25:1174–1181.

    PubMed  Google Scholar 

  57. Merli M, Calicchia A, Ruffa A, et al. Cardiac dysfunction in cirrhosis is not associated with the severity of liver disease. Eur J Intern Med. 2013;24:172–176.

    PubMed  Google Scholar 

  58. Sampaio F, Pimenta J, Bettencourt N, et al. Systolic dysfunction and diastolic dysfunction do not influence medium-term prognosis in patients with cirrhosis. Eur J Intern Med. 2014;25:241–246.

    PubMed  Google Scholar 

  59. Karagiannakis D, Vlachogiannakos J, Anastasiadis G, Vafiadis-Zoumboulis I, Ladas SD. Diastolic cardiac dysfunction is a predictor of dismal prognosis in patients with liver cirrhosis. Hepatol Int. 2014;8:588–594.

    Google Scholar 

  60. Grose RD, Nolan J, Dilon JF, et al. Exercise-induced left ventricular dysfunction in alcoholic and non-alcoholic cirrhosis. J Hepatol. 1995;22:326–332.

    CAS  PubMed  Google Scholar 

  61. Wong F, Girgrah N, Graba J, Allidina Y, Liu P, Blendis L. The cardiac response to exercise in cirrhosis. Gut. 2001;49:268–275.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Kim MY, Baik SK, Won CS, et al. Dobutamine stress echocardiography for evaluating cirrhotic cardiomyopathy in liver cirrhosis. Korean J Hepatol. 2010;16:376–382.

    PubMed Central  PubMed  Google Scholar 

  63. Krag A, Bendtsen F, Burroughs AK, Moller S. The cardiorenal link in advanced cirrhosis. Med Hypotheses. 2012;79:53–55.

    PubMed  Google Scholar 

  64. Moller S, Hove JD, Dixen U, Bendtsen F. New insights into cirrhotic cardiomyopathy. Int J Cardiol. 2013;167:1101–1108.

    PubMed  Google Scholar 

  65. Krag A, Bendtsen F, Henriksen JH, Moller S. Low cardiac output predicts development of hepatorenal syndrome and survival in patients with cirrhosis and ascites. Gut. 2010;59:105–110.

    CAS  PubMed  Google Scholar 

  66. Ruiz-Del-Arbol L, Urman J, Fernandez J. et al. Systemic, renal, and hepatic hemodynamic derangement in cirrhotic patients with spontaneous bacterial peritonitis Hepatology. 2003;38:1210–1218.

    Google Scholar 

  67. Henriksen JH, Goetze JP, Fuglsang S, et al. Increased circulating pro-brain natriuretic peptide (proBNP) and brain natriuretic peptide (BNP) in patients with cirrhosis: relation to cardiovascular dysfunction and severity of disease. Gut. 2003;52:1511–1517.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Pimenta J, Paulo C, Gomes A, Silva S, Rocha-Goncalves F, Bettencourt P. B-type natriuretic peptide is related to cardiac function and prognosis in hospitalized patients with decompensated cirrhosis. Liver Int. 2010;30:1059–1066.

    CAS  PubMed  Google Scholar 

  69. Saner FH, Neumann T, Canbay A, et al. High brain-natriuretic peptide level predicts cirrhotic cardiomyopathy in liver transplant patients. Transpl Int. 2011;24:425–432.

    CAS  PubMed  Google Scholar 

  70. Bernardi M, Maggioli C, Dibra V, Zaccherini G. QT interval prolongation in liver cirrhosis: innocent bystander or serious threat? Expert Rev Gastroenterol Hepatol. 2012;6:57–66.

    PubMed  Google Scholar 

  71. Trevisani F, Merli M, Savelli F, et al. QT interval in patients with non-cirrhotic portal hypertension and in cirrhotic patients treated with transjugular intrahepatic porto-systemic shunt. J Hepatol. 2003;38:461–467.

    PubMed  Google Scholar 

  72. Ytting H, Henriksen JH, Fuglsang S, Bendtsen F, Moller S. Prolonged Q-Tc interval in mild portal hypertensive cirrhosis. J Hepatol. 2005;43:637–644.

    PubMed  Google Scholar 

  73. Hansen S, Moller S, Bendtsen F, Jensen G, Henriksen JH. Diurnal variation and dispersion in QT interval in cirrhosis: relation to haemodynamic changes. J Hepatol. 2007;47:373–380.

    PubMed  Google Scholar 

  74. Zambruni A, Trevisani F, Di Micoli A, et al. Effect of chronic β-blockage on QT interval in patients with liver cirrhosis. J Hepatol. 2008;48:415–421.

    PubMed  Google Scholar 

  75. Henriksen JH, Fuglsang S, Bendtsen F, Christensen E, Moller S. Dyssynchronous electrical and mechanical systole in patients with cirrhosis. J Hepatol. 2002;36:513–520.

    PubMed  Google Scholar 

  76. Reich DL, Wood RK Jr, Emre S, et al. Association of intraoperative hypotension and pulmonary hypertension with adverse outcomes after orthotopic liver transplantation. J Cardiothorac Vasc Anesth. 2003;17:699–702.

    PubMed  Google Scholar 

  77. Glauser FL. Systemic hemodynamic and cardiac function changes in patients undergoing orthotopic liver transplantation. Chest. 1990;98:1210–1215.

    CAS  PubMed  Google Scholar 

  78. Navasa M, Feu F, Garcia-Pagan JC, et al. Hemodynamic and humoral changes after liver transplantation in patients with cirrhosis. Hepatology. 1993;17:355–360.

    CAS  PubMed  Google Scholar 

  79. Mohamed R, Forsey PR, Davies MK, Neuberger JM. Effect of liver transplantation on QT interval prolongation and autonomic dysfunction in end-stage liver disease. Hepatology. 1996;23:1128–1134.

    CAS  PubMed  Google Scholar 

  80. Henderson JM, Mackay GJ, Hooks M, et al. High cardiac output of advanced liver diseases persists after orthotopic liver transplantation. Hepatology. 1992;15:258–262.

    CAS  PubMed  Google Scholar 

  81. Piscaglia F, Zironi G, Gaiani S, et al. Systemic and splanchnic hemodynamic changes after liver transplantation for cirrhosis: a long-term prospective study. Hepatology. 1999;30:58–64.

    CAS  PubMed  Google Scholar 

  82. Tsochatzis EA, Bosch J, Burroughs AK. New therapeutic paradigm for patients with cirrhosis. Hepatology. 2012;56:1983–1992.

    CAS  PubMed  Google Scholar 

  83. Tandon P, Abraldes JG, Berzigotti A, Garcia-Pagan JC, Bosch J. Renin-angiotensin-aldosterone inhibitors in the reduction of portal pressure: a systematic review and meta-analysis. J Hepatol. 2010;53:273–282.

    CAS  PubMed  Google Scholar 

  84. Wong KY, Wong SY, McSwiggan S, et al. Myocardial fibrosis and QTc are reduced following treatment with spironolactone or amiloride in stroke survivors: a randomised placebo-controlled cross-over trial. Int J Cardiol. 2013;168:5229–5233.

    CAS  PubMed  Google Scholar 

  85. Coelho-Filho OR, Shah RV, Neilan TG, et al. Cardiac magnetic resonance assessment of interstitial myocardial fibrosis and cardiomyocyte hypertrophy in hypertensive mice treated with spironolactone. J Am Heart Assoc. 2014;3:e000790.

    PubMed Central  PubMed  Google Scholar 

  86. Pozzi M, Grassi G, Ratti L, et al. Cardiac, neuroadrenergic and portal hemodynamic effects of prolonged aldosterone blockage in postviral child A cirrhosis. Am J Gastroenterol. 2005;100:1110–1116.

    CAS  PubMed  Google Scholar 

  87. D’Amico G, Pagliaro L, Bosch J. The treatment of portal hypertension: a meta-analytic review. Hepatology. 1995;22:332–354.

    PubMed  Google Scholar 

  88. Andreu V, Perello A, Moitinho E, et al. Total effective vascular compliance in patients with cirrhosis. The role of propranolol. J Hepatol. 2002;36:356–361.

    CAS  PubMed  Google Scholar 

  89. Lin HC, Yang YY, Hou MC, Huang YT, Lee FY, Lee SD. Acute administration of carvedilol is more effective than propranolol plus isosorbide-5-mononitrate in the reduction of portal pressure in patients with viral cirrhosis. Am J Gastroenterol. 2004;99:1953–1958.

    CAS  PubMed  Google Scholar 

  90. Banares R, Moitinho E, Matilla A, et al. Randomised comparison of long-term carvedilol and propranolol administration in the treatment of portal hypertension in cirrhosis. Hepatology. 2002;36:1367–1373.

    CAS  PubMed  Google Scholar 

  91. Dalla Libera L, Ravara B, Gobbo V, et al. Skeletal muscle myofibrillar protein oxidation in heart failure and the protective effect of carvedilol. J Mol Cell Cardiol. 2005;38:803–807.

    CAS  PubMed  Google Scholar 

  92. Nanjo S, Yamazaki J, Yoshikawa K, Ishii T, Togane Y. Carvedilol prevents myocardial fibrosis in hamsters. Int Heart J. 2006;47:607–616.

    CAS  PubMed  Google Scholar 

  93. Ronsein GE, Guidi DB, Benassi JC, Filho DW, Pedrosa RC. Cytoprotective effects of carvedilol against oxygen free radical generation in rat liver. Redox Rep. 2005;10:131–137.

    CAS  PubMed  Google Scholar 

  94. Hobolth L, Bendtsen F, Hansen EF, Moller S. Effects of carvedilol and propranolol on circulatory regulation and oxygenation in cirrhosis: a randomised study. Dig Liver Dis. 2014;46:251–256.

    CAS  PubMed  Google Scholar 

  95. Exner DV, Dries DL, Waclawiw MA, Shelton B, Domanski MJ. Beta-adrenergic blocking agent use and mortality in patients with asymptomatic and symptomatic left ventricular systolic dysfunction: a post hoc analysis of the Studies of Left Ventricular Dysfunction. J Am Coll Cardiol. 1999;33:916–923.

    CAS  PubMed  Google Scholar 

  96. Serste T, Melot C, Francoz C, et al. Deleterious effects of beta-blockers on survival in patients with cirrhosis and refractory ascites. Hepatology. 2010;52:1017–1022.

    CAS  PubMed  Google Scholar 

  97. Serste T, Francoz C, Durand F, et al. Beta-blockers cause paracentesis-induced circulatory dysfunction in patients with cirrhosis and refractory ascites: a cross-over study. J Hepatol. 2011;55:794–799.

    CAS  PubMed  Google Scholar 

  98. Jurgens G, Muller M, Garidel P, et al. Investigation into the interaction of recombinant human serum albumin with Re-lipopolysaccharide and lipid A. J Endotoxin Res. 2002;8:115–126.

    CAS  PubMed  Google Scholar 

  99. Dziarski R. Cell-bound albumin is the 70-kDa peptidoglycan-, lipopolysaccharide-, and lipoteichoic acid-binding protein on lymphocytes and macrophages. J Biol Chem. 1994;269:20431–20436.

    CAS  PubMed  Google Scholar 

  100. Arroyo V, Garcia-Martinez R, Salvatella X. Human serum albumin, systemic inflammation and cirrhosis. J Hepatol. 2014;61:396–407.

    CAS  PubMed  Google Scholar 

  101. Fernandez J, Navasa M, Garcia-Pagan JC, et al. Effect of intravenous albumin on systemic and hepatic hemodynamics and vasoactive neurohormonal systems in patients with cirrhosis and spontaneous bacterial peritonitis. J Hepatol. 2004;41:384–390.

    CAS  PubMed  Google Scholar 

  102. Fernandez J, Monteagudo J, Bargallo X, et al. A randomised unblinded pilot study comparing albumina vs. hydroxyethyl starch in spontaneous bacterial peritonitis. Hepatology. 2005;42:627–634.

    CAS  PubMed  Google Scholar 

  103. Bortoluzzi A, Ceolotto G, Gola E, et al. Positive cardiac inotropic effect of albumin infusion in rodents with cirrhosis and ascites: molecular mechanisms. Hepatology. 2013;57:266–276.

    CAS  PubMed  Google Scholar 

  104. Mancini DM, Katz SD, Lang CC, et al. Effect of erythropoietin on exercise capacity in patients with moderate to severe chronic heart failure. Circulation. 2003;107:294–299.

    CAS  PubMed  Google Scholar 

  105. Silverberg DS, Wexler D, Sheps D, et al. The effect of correction of mild anemia in severe, resistant congestive heart failure using subcutaneous erythropoietin and intravenous iron: a randomized controlled study. J Am Coll Cardiol. 2001;37:1775–1780.

    CAS  PubMed  Google Scholar 

  106. Liu L, Liu H, Nam SW, Lee SS. Protective effects of erythropoietin on cirrhotic cardiomyopathy in rats. Dig Liver Dis. 2012;44:1012–1017.

    CAS  PubMed  Google Scholar 

  107. Yao J, Zhou CS, Ma X, et al. FXR agonist GW4064 alleviates endotoxin-induced hepatic inflammation by repressing macrophage activation. World J Gastroenterol. 2014;20:14430–14441.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The guarantor of this paper is Assistant Professor Dr. Jiannis Vlachogiannakos. Dimitrios S. Karagiannakis has taken over the planning, concept design, data analysis, as well as the review write up. For the study design, as well as data interpretation, Associate Professor George Papatheodoridis was also involved.

Conflict of interest

All the authors have approved the final draft submitted to this journal with nothing to disclose, regarding funding or conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios S. Karagiannakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karagiannakis, D.S., Papatheodoridis, G. & Vlachogiannakos, J. Recent Advances in Cirrhotic Cardiomyopathy. Dig Dis Sci 60, 1141–1151 (2015). https://doi.org/10.1007/s10620-014-3432-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-014-3432-8

Keywords

Navigation