Skip to main content

Advertisement

Log in

Chemokine–Chemokine Receptor CCL2–CCR2 and CX3CL1–CX3CR1 Axis May Play a Role in the Aggravated Inflammation in Primary Biliary Cirrhosis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aims

Senescent cells can alter local tissue environments by secretion of various senescence-associated secretory phenotypes (SASP), such as cytokines and chemokines. Given senescent biliary epithelial cells (BECs) in damaged small bile ducts in primary biliary cirrhosis (PBC) show increased expression of chemokines CCL2 and CX3CL1 as SASP, we further examined an involvement of CCL2/CCR2 and CX3CL1/CX3CR1 systems in the pathogenesis of PBC.

Methods

We examined immunohistochemically the expression of CCR2, CX3CR1, CCL2 and CX3CL1 in livers taken from the patients with PBC (n = 45) and control livers (n = 78), such as chronic viral hepatitis (CVH; n = 39). CCR2 or CX3CR1-expressing cells were characterized by double immunofluorescence with CD3, CD4, CD8, CD56 or CD68.

Results

CCR2 is expressed in round cells, epithelioid cells and dendritic cells and most CCR2-positive cells were CD68-positive. Infiltration of CCR2-positive cells in the intraepithelial layer or around small bile ducts was significantly more extensive in PBC than CVH and normal liver (p < 0.05) and was significantly correlated with the expression of CCL2 in BECs (p < 0.01). Most CX3CR1-expressing inflammatory cells were CD3-positive T cells (CD8 > CD4). Infiltration of CX3CR1-positive cells in the intraepithelial layer and around small bile ducts was significantly more extensive in PBC than control livers (p < 0.05) and was significantly correlated with the expression of CX3CL1 in BECs (p < 0.05).

Conclusion

CCL2 and CX3CL1 produced by senescent BECs may promote infiltration of corresponding CCR2 and CX3CR1-expressing cells and further aggravate inflammation in bile duct lesion in PBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gershwin ME, Mackay IR, Sturgess A, Coppel RL. Identification and specificity of a cDNA encoding the 70 kd mitochondrial antigen recognized in primary biliary cirrhosis. J Immunol. 1987;138:3525–3531.

    CAS  PubMed  Google Scholar 

  2. Kaplan M. Primary biliary cirrhosis. New Engl J Med. 1996;335:1570–1580.

    Article  CAS  PubMed  Google Scholar 

  3. Portmann B, Nakanuma Y. Diseases of the bile ducts. In: Ishak K, Scheuer P, Anthony P, MacSween R, Burt A, BC P, eds. Pathology of the Liver. London: Churchill Livingstone; 2001:435–506.

    Google Scholar 

  4. Nakanuma Y, Ohta G. Histometric and serial section observations of the intrahepatic bile ducts in primary biliary cirrhosis. Gastroenterology. 1979;76:1326–1332.

    CAS  PubMed  Google Scholar 

  5. Sasaki M, Ikeda H, Yamaguchi J, Nakada S, Nakanuma Y. Telomere shortening in the damaged small bile ducts in primary biliary cirrhosis reflects ongoing cellular senescence. Hepatology. 2008;48:186–195.

    Article  PubMed  Google Scholar 

  6. Sasaki M, Ikeda H, Haga H, Manabe T, Nakanuma Y. Frequent cellular senescence in small bile ducts in primary biliary cirrhosis: a possible role in bile duct loss. J Pathol. 2005;205:451–459.

    Article  PubMed  Google Scholar 

  7. Sasaki M, Ikeda H, Nakanuma Y. Activation of ATM signaling pathway is involved in oxidative stress-induced expression of mito-inhibitory p21(WAF1/Cip1) in chronic non-suppurative destructive cholangitis in primary biliary cirrhosis: an immunohistochemical study. J Autoimmun. 2008;31:73–78.

    Article  CAS  PubMed  Google Scholar 

  8. Sasaki M, Ikeda H, Sato Y, Nakanuma Y. Decreased expression of Bmi1 is closely associated with cellular senescence in small bile ducts in primary biliary cirrhosis. Am J Pathol. 2006;169:831–845.

    Article  CAS  PubMed  Google Scholar 

  9. Lunz JG 3rd, Contrucci S, Ruppert K, et al. Replicative senescence of biliary epithelial cells precedes bile duct loss in chronic liver allograft rejection: increased expression of p21(WAF1/Cip1) as a disease marker and the influence of immunosuppressive drugs. Am J Pathol. 2001;158:1379–1390.

    Article  CAS  PubMed  Google Scholar 

  10. Krizhanovsky V, Yon M, Dickins RA, et al. Senescence of activated stellate cells limits liver fibrosis. Cell. 2008;134:657–667.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Plentz RR, Park YN, Lechel A, et al. Telomere shortening and inactivation of cell cycle checkpoints characterize human hepatocarcinogenesis. Hepatology. 2007;45:968–976.

    Article  CAS  PubMed  Google Scholar 

  12. Acosta JC, O’Loghlen A, Banito A, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell. 2008;133:1006–1018.

    Article  CAS  PubMed  Google Scholar 

  13. Kuilman T, Michaloglou C, Vredeveld LC, et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell. 2008;133:1019–1031.

    Article  CAS  PubMed  Google Scholar 

  14. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR. Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell. 2008;132:363–374.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Shelton DN, Chang E, Whittier PS, Choi D, Funk WD. Microarray analysis of replicative senescence. Curr Biol. 1999;9:939–945.

    Article  CAS  PubMed  Google Scholar 

  16. Coppe JP, Patil CK, Rodier F, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6:2853–2868.

    Article  CAS  PubMed  Google Scholar 

  17. Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y. Modulation of the microenvironment by senescent biliary epithelial cells may be involved in the pathogenesis of primary biliary cirrhosis. J Hepatol. 2010;53:318–325.

    Article  PubMed  Google Scholar 

  18. Nakanuma Y, Sasaki M. Expression of blood-group-related antigens in the intrahepatic biliary tree and hepatocytes in normal livers and various hepatobiliary diseases. Hepatology. 1989;10:174–178.

    Article  CAS  PubMed  Google Scholar 

  19. Ludwig J. Small-duct primary sclerosing cholangitis. Semin Liver Dis. 1991;11:11–17.

    Article  CAS  PubMed  Google Scholar 

  20. Desmet V, Gerber M, Hoofnagle J, Manns M, Scheuer P. Classification of chronic hepatitis: diagnosis, grading and staging. Hepatology. 1994;19:1513–1520.

    Article  CAS  PubMed  Google Scholar 

  21. Degre D, Lemmers A, Gustot T, et al. Hepatic expression of CCL2 in alcoholic liver disease is associated with disease severity and neutrophil infiltrates. Clin Exp Immunol. 2012;169:302–310.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Miura K, Yang L, van Rooijen N, Ohnishi H, Seki E. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am J Physiol Gastrointest Liver Physiol. 2012;302:G1310–G1321.

    Article  CAS  PubMed  Google Scholar 

  23. Viebahn CS, Benseler V, Holz LE, et al. Invading macrophages play a major role in the liver progenitor cell response to chronic liver injury. J Hepatol. 2010;53:500–507.

    Article  CAS  PubMed  Google Scholar 

  24. Chiba M, Sasaki M, Kitamura S, Ikeda H, Sato Y, Nakanuma Y. Participation of bile ductular cells in the pathological progression of non-alcoholic fatty liver disease. J Clin Pathol. 2011;64:564–570.

    Article  PubMed  Google Scholar 

  25. Ohanna M, Giuliano S, Bonet C, et al. Senescent cells develop a PARP-1 and nuclear factor-{kappa}B-associated secretome (PNAS). Genes Dev. 2011;25:1245–1261.

    Article  CAS  PubMed  Google Scholar 

  26. Shimoda S, Harada K, Niiro H, et al. CX3CL1 (fractalkine): a signpost for biliary inflammation in primary biliary cirrhosis. Hepatology. 2010;51:567–575.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Isse K, Harada K, Zen Y, et al. Fractalkine and CX3CR1 are involved in the recruitment of intraepithelial lymphocytes of intrahepatic bile ducts. Hepatology. 2005;41:506–516.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang W, Ono Y, Miyamura Y, Bowlus CL, Gershwin ME, Maverakis E. T cell clonal expansions detected in patients with primary biliary cirrhosis express CX3CR1. J Autoimmun. 2011;37:71–78.

    Article  PubMed  Google Scholar 

  29. de Vos AF, Pater JM, van den Pangaart PS, de Kruif MD, van ‘t Veer C, van der Poll Y. In vivo lipopolysaccharide exposure of human blood leukocytes induces cross-tolerance to multiple TLR ligands. J Immunol. 2009;183:533–542.

    Article  PubMed  Google Scholar 

  30. van ‘t Veer C, van den Pangaart PS, van Zoelen MA et al. Induction of IRAK-M is associated with lipopolysaccharide tolerance in a human endotoxemia model. J Immunol. 2007;179:7110–7120.

    Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Culture, Sports and Science and Technology of Japan (24590409).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuni Nakanuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, M., Miyakoshi, M., Sato, Y. et al. Chemokine–Chemokine Receptor CCL2–CCR2 and CX3CL1–CX3CR1 Axis May Play a Role in the Aggravated Inflammation in Primary Biliary Cirrhosis. Dig Dis Sci 59, 358–364 (2014). https://doi.org/10.1007/s10620-013-2920-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-013-2920-6

Keywords

Navigation