Skip to main content
Log in

Secretome of senescent hepatoma cells modulate immune cell fate by macrophage polarization and neutrophil extracellular traps formation

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Presence of dysfunctional senescent hepatocytes is a hallmark feature of liver cirrhosis which finally culminates in liver cancer. We now report the presence of senescent hepatocytes (p21 and p53 positive) in the vicinity of infiltrated immune cells in hepatocellular carcinoma tissue specimens by immunohistochemistry. Hence, we evaluated in vitro, the relevance of senescent hepatoma cells in altering the fate of monocytes and neutrophils by assaying for macrophage polarization and extracellular trap (NETs) formation, respectively. Premature senescence was induced in hepatoma cells (HepG2 and Huh7 cells) by treating cells with doxorubicin. Senescent hepatoma cells showed strong inflammatory phenotype with induced expression of cytokines (IL1β, IL6, IL8 and IL13) as evaluated by flow cytometry. The senescent secretome from hepatoma cells when incubated with healthy monocytes caused it to differentiate predominantly towards M2 fate (CD80low CD86low CD163high CD206high) when analysed by flow cytometry. This was corroborated by the finding in clinical samples where human hepatocellular carcinoma harbouring senescent hepatocytes showed presence of M2 macrophages, while M1 macrophages were predominant in non-tumorous region. Additionally, the senescent secretome from Huh7 cells enhanced the NETs formation, while HepG2 secretome had an inhibitory effect. In conclusion, the “pro-inflammatory” senescent secretome drives non-inflammatory type M2 macrophage polarization and modulated neutrophil traps which in turn can influence the tumor microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Ramakrishna G, Rastogi A, Trehanpati N, Sen B, Khosla R, Sarin SK. From cirrhosis to hepatocellular carcinoma: new molecular insights on inflammation and cellular senescence. Liver Cancer. 2013;2:367–83. https://doi.org/10.1159/000343852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ringelhan M, Pfister D, O’Connor T, Pikarsky E, Heikenwalder M. The immunology of hepatocellular carcinoma. Nat Immunol. 2018;19:222–32. https://doi.org/10.1038/s41590-018-0044-z.

    Article  CAS  PubMed  Google Scholar 

  3. Tarao K, Ohkawa S, Miyagi Y, Morinaga S, Ohshige K, Yamamoto N, Ueno M, Kobayashi S, Kameda R, Tamai S, Nakamura Y, Miyakawa K, Kameda Y, Okudaira M. Inflammation in background cirrhosis evokes malignant progression in HCC development from HCV-associated liver cirrhosis. Scand J Gastroenterol. 2013;48:729–35. https://doi.org/10.3109/00365521.2013.782064.

    Article  CAS  PubMed  Google Scholar 

  4. Bishayee A. The role of inflammation and liver cancer. Adv Exp Med Biol. 2014;816:401–35. https://doi.org/10.1007/978-3-0348-0837-8_16.

    Article  CAS  PubMed  Google Scholar 

  5. Wiemann SU, Satyanarayana A, Tsahuridu M, Tillmann HL, Zender L, Klempnauer J, Flemming P, Franco S, Blasco MA, Manns MP, Rudolph KL. Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J. 2002;16:935–42. https://doi.org/10.1096/fj.01-0977com.

    Article  CAS  PubMed  Google Scholar 

  6. Jiang H, Ju Z, Rudolph KL. Telomere shortening and ageing. Z Gerontol Geriatr. 2007;40:314–24. https://doi.org/10.1007/s00391-007-0480-0.

    Article  CAS  PubMed  Google Scholar 

  7. Plentz RR, Park YN, Lechel A, Kim H, Nellessen F, Langkopf BH, Wilkens L, Destro A, Fiamengo B, Manns MP, Roncalli M, Rudolph KL. Telomere shortening and inactivation of cell cycle checkpoints characterize human hepatocarcinogenesis. Hepatology. 2007;45:968–76. https://doi.org/10.1002/hep.21552.

    Article  CAS  PubMed  Google Scholar 

  8. Aravinthan AD, Alexander GJM. Senescence in chronic liver disease: is the future in aging? J Hepatol. 2016;65:825–34. https://doi.org/10.1016/j.jhep.2016.05.030.

    Article  CAS  PubMed  Google Scholar 

  9. Sen B, Rastogi A, Nath R, Shasthry SM, Pamecha V, Pandey S, Gupta KJ, Sarin SK, Trehanpati N, Ramakrishna G. Senescent hepatocytes in decompensated liver show reduced UPR(MT) and its key player CLPP, attenuates senescence in vitro. Cell Mol Gastroenterol Hepatol. 2019;8:73–94. https://doi.org/10.1016/j.jcmgh.2019.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Demaria M, O’Leary MN, Chang J, Shao L, Liu S, Alimirah F, Koenig K, Le C, Mitin N, Deal AM, Alston S, Academia EC, Kilmarx S, Valdovinos A, Wang B, de Bruin A, Kennedy BK, Melov S, Zhou D, Sharpless NE, Muss H, Campisi J. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 2017;7:165–76. https://doi.org/10.1158/2159-8290.CD-16-0241.

    Article  CAS  PubMed  Google Scholar 

  11. Irvine KM, Skoien R, Bokil NJ, Melino M, Thomas GP, Loo D, Gabrielli B, Hill MM, Sweet MJ, Clouston AD, Powell EE. Senescent human hepatocytes express a unique secretory phenotype and promote macrophage migration. World J Gastroenterol. 2014;20:17851–62. https://doi.org/10.3748/wjg.v20.i47.17851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh DF, Bolden JE, Zhao Z, Thapar V, Joyce JA, Krizhanovsky V, Lowe SW. Non-cell-autonomous tumor suppression by p53. Cell. 2013;153:449–60. https://doi.org/10.1016/j.cell.2013.03.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van der Windt DJ, Sud V, Zhang H, Varley PR, Goswami J, Yazdani HO, Tohme S, Loughran P, O’Doherty RM, Minervini MI, Huang H, Simmons RL, Tsung A. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology. 2018;68:1347–60. https://doi.org/10.1002/hep.29914.

    Article  CAS  PubMed  Google Scholar 

  14. Claria J, Stauber RE, Coenraad MJ, Moreau R, Jalan R, Pavesi M, Amoros A, Titos E, Alcaraz-Quiles J, Oettl K, Morales-Ruiz M, Angeli P, Domenicali M, Alessandria C, Gerbes A, Wendon J, Nevens F, Trebicka J, Laleman W, Saliba F, Welzel TM, Albillos A, Gustot T, Benten D, Durand F, Gines P, Bernardi M, Arroyo V, CANONIC Study Investigators of the EASL-CLIF Consortium and the European Foundation for the Study of Chronic Liver Failure (EF-CLIF). Systemic inflammation in decompensated cirrhosis: characterization and role in acute-on-chronic liver failure. Hepatology. 2016;64:1249–64. https://doi.org/10.1002/hep.28740.

    Article  CAS  PubMed  Google Scholar 

  15. Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA. 2001;98:12072–7. https://doi.org/10.1073/pnas.211053698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, Aarden LA, Mooi WJ, Peeper DS. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell. 2008;133:1019–31. https://doi.org/10.1016/j.cell.2008.03.039.

    Article  CAS  PubMed  Google Scholar 

  17. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. The essence of senescence. Genes Dev. 2010;24:2463–79. https://doi.org/10.1101/gad.1971610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA. 1995;92:9363–7.

    Article  CAS  Google Scholar 

  19. Carmona-Rivera C, Kaplan MJ. Induction and quantification of NETosis. Curr Protoc Immunol. 2016. https://doi.org/10.1002/cpim.16.

    Article  PubMed  Google Scholar 

  20. Anwar T, Sen B, Aggarwal S, Nath R, Pathak N, Katoch A, Aiyaz M, Trehanpati N, Khosla S, Ramakrishna G. Differentially regulated gene expression in quiescence versus senescence and identification of ARID5A as a quiescence associated marker. J Cell Physiol. 2018;233(5):3695–712.

    Article  CAS  Google Scholar 

  21. Bystry RS, Aluvihare V, Welch KA, Kallikourdis M, Betz AG. B cells and professional APCs recruit regulatory T cells via CCL4. Nat Immunol. 2001;2:1126–32. https://doi.org/10.1038/ni735.

    Article  CAS  PubMed  Google Scholar 

  22. Beider K, Abraham M, Begin M, Wald H, Weiss ID, Wald O, Pikarsky E, Abramovitch R, Zeira E, Galun E, Nagler A, Peled A. Interaction between CXCR4 and CCL20 pathways regulates tumor growth. PLoS ONE. 2009;4:e5125. https://doi.org/10.1371/journal.pone.0005125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Demers M, Wong SL, Martinod K, Gallant M, Cabral JE, Wang Y, Wagner DD. Priming of neutrophils toward NETosis promotes tumor growth. Oncoimmunology. 2016;5:e1134073. https://doi.org/10.1080/2162402X.2015.1134073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kang TW, Yevsa T, Woller N, Hoenicke L, Wuestefeld T, Dauch D, Hohmeyer A, Gereke M, Rudalska R, Potapova A, Iken M, Vucur M, Weiss S, Heikenwalder M, Khan S, Gil J, Bruder D, Manns M, Schirmacher P, Tacke F, Ott M, Luedde T, Longerich T, Kubicka S, Zender L. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature. 2011;479:547–51. https://doi.org/10.1038/nature10599.

    Article  CAS  PubMed  Google Scholar 

  25. Eggert T, Wolter K, Ji J, Ma C, Yevsa T, Klotz S, Medina-Echeverz J, Longerich T, Forgues M, Reisinger F, Heikenwalder M, Wang XW, Zender L, Greten TF. Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression. Cancer Cell. 2016;30:533–47. https://doi.org/10.1016/j.ccell.2016.09.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, Iwakura Y, Oshima K, Morita H, Hattori M, Honda K, Ishikawa Y, Hara E, Ohtani N. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499:97–101. https://doi.org/10.1038/nature12347.

    Article  CAS  PubMed  Google Scholar 

  27. Ma H, Gao L, Li S, Qin J, Chen L, Liu X, Xu P, Wang F, Xiao H, Zhou S, Gao Q, Liu B, Sun Y, Liang C. CCR7 enhances TGF-beta1-induced epithelial-mesenchymal transition and is associated with lymph node metastasis and poor overall survival in gastric cancer. Oncotarget. 2015;6:24348–60. https://doi.org/10.18632/oncotarget.4484.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yang L, Chang Y, Cao P. CCR7 preservation via histone deacetylase inhibition promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells. Exp Cell Res. 2018;371:231–7. https://doi.org/10.1016/j.yexcr.2018.08.015.

    Article  CAS  PubMed  Google Scholar 

  29. Wang X, Zhang W, Ding Y, Guo X, Yuan Y, Li D. CRISPR/Cas9-mediated genome engineering of CXCR4 decreases the malignancy of hepatocellular carcinoma cells in vitro and in vivo. Oncol Rep. 2017;37:3565–71. https://doi.org/10.3892/or.2017.5601.

    Article  CAS  PubMed  Google Scholar 

  30. Gao PT, Ding GY, Yang X, Dong RZ, Hu B, Zhu XD, Cai JB, Ji Y, Shi GM, Shen YH, Zhou J, Fan J, Sun HC, Huang C. Invasive potential of hepatocellular carcinoma is enhanced by loss of selenium-binding protein 1 and subsequent upregulation of CXCR4. Am J Cancer Res. 2018;8:1040–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chatterjee S, Behnam Azad B, Nimmagadda S. The intricate role of CXCR4 in cancer. Adv Cancer Res. 2014;124:31–82.

    Article  CAS  Google Scholar 

  32. Aras S, Zaidi MR. TAMeless traitors: macrophages in cancer progression and metastasis. Br J Cancer. 2017;117:1583–91. https://doi.org/10.1038/bjc.2017.356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mazzoni M, Mauro G, Erreni M, Romeo P, Minna E, Vizioli MG, Belgiovine C, Rizzetti MG, Pagliardini S, Avigni R, Anania MC, Allavena P, Borrello MG, Greco A. Senescent thyrocytes and thyroid tumor cells induce M2-like macrophage polarization of human monocytes via a PGE2-dependent mechanism. J Exp Clin Cancer Res. 2019;38(1):208. https://doi.org/10.1186/s13046-019-1198-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yeung OW, Lo CM, Ling CC, Qi X, Geng W, Li CX, Ng KT, Forbes SJ, Guan XY, Poon RT, Fan ST, Man K. Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J Hepatol. 2015;62:607–16. https://doi.org/10.1016/j.jhep.2014.10.029.

    Article  CAS  PubMed  Google Scholar 

  35. Lee W, Ko SY, Mohamed MS, Kenny HA, Lengyel E, Naora H. Neutrophils facilitate ovarian cancer premetastatic niche formation in the omentum. J Exp Med. 2019;216:176–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

BS is a recipient of UGC senior research fellowship. We thank DST-FIST for infrastructural support. We are thankful to Dr. Ritesh Kumar Tiwari (CU-BD, CoE, CRNN) for helping with flow cytometry analysis. We thank the anonymous reviewers for giving expert inputs which helped in improvement of the manuscript.

Funding

The authors thank DST-FIST  (Dept Science and Technology, India) for providing infrastructural grant and UGC for providing fellowship to BS.

Author information

Authors and Affiliations

Authors

Contributions

BS: Performed all experiments, compiled and analysed data, and inputs in manuscript writing, GR: Conceived and designed study, analysed data and wrote manuscript, SA, RN, RS, KA, RS, AN: helped in experimental protocols; NT: provided valuable research inputs, helped with flow cytometry analysis and flowantibodies; AR: Read pathology slides and gave critical clinical inputs on interpretation of IHC results, MB: provided blood samples of healthy volunteers, VP: valuable clinical inputs on study design and provided resected specimens.

Corresponding author

Correspondence to Gayatri Ramakrishna.

Ethics declarations

Conflict of interest

All other authors declare that there is no competing interests.

Ethical approval

The study was approved by the Ethics Committee of Institute of Liver and Biliary Sciences, Delhi, India.

Informed consent

Informed consent of healthy volunteers who consented to give their blood were included in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, B., Aggarwal, S., Nath, R. et al. Secretome of senescent hepatoma cells modulate immune cell fate by macrophage polarization and neutrophil extracellular traps formation. Med Oncol 39, 134 (2022). https://doi.org/10.1007/s12032-022-01732-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01732-w

Keywords

Navigation