Skip to main content

Advertisement

Log in

Moderate Physical Exercise Protects Myenteric Metabolically More Active Neurons in Mice Infected with Trypanosoma cruzi

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Trypanosoma cruzi causes neuronal myenteric depopulation compromising intestinal function.

Aim

The purpose of this study was to evaluate the influence of moderate physical exercise on NADH diaphorase (NADH-d)-positive neurons in the myenteric plexus and intestinal wall of the colon in mice infected with T. cruzi.

Materials and Methods

Forty 30-day-old male Swiss mice were divided into the following groups: trained infected (TI), sedentary infected (SI), trained control (TC), and sedentary control. The TC and TI groups were subjected to a moderate physical exercise program on a treadmill for 8 weeks. Three days after finishing physical exercise, the TI and SI groups were intraperitoneally inoculated with 1,300 blood trypomastigotes of the Y strain of Trypanosoma cruzi. Parasitemia was evaluated from days 4 to 61 after inoculation. On day 75 of infection, myenteric neurons in the colon were quantified (NADH-d), and inflammatory foci were counted. Tumor necrosis factor-α (TNF-α) and transforming growth factor-β (TGF-β) levels were evaluated in plasma. The results were compared using analysis of variance and the Kruskal–Wallis test at a 5 % significance level.

Results

Moderate physical exercise reduced the parasite peak on day 8 of infection (p = 0.0132) and total parasitemia (p = 0.0307). It also prevented neuronal depopulation (p < 0.01), caused hypertrophy of these cells (p < 0.05), prevented the formation of inflammatory foci (p < 0.01), and increased the synthesis of TNF-α (p < 0.01) and TGF-β (p > 0.05).

Conclusion

These results reinforce the therapeutic benefits of moderate physical exercise for T. cruzi infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. World Health Organization. Chagas disease (American trypanosomiasis). http://www.who.int/mediacentre/factsheets/fs340/en/. Accessed August 7, 2013.

  2. Portal da Saúde. Aspectos epidemiológicos. http://portal.saude.gov.br/portal/saude/profissional/visualizar_texto.cfm?idtxt=31454. Accessed August 7, 2013.

  3. Lana M, Tafure WL. Trypanosoma cruzi e doença de Chagas. In: Neves DP, De Melo AL, Linardi PM, Vitor RWA, eds. Parasitologia humana. 12th ed. São Paulo: Atheneu; 2011:89–114.

    Google Scholar 

  4. Adad SJ, Cançado CG, Etchebehere RM, et al. Neuron count reevaluation in the myenteric plexus of chagasic megacolon after morphometric neuron analysis. Virchows Arch. 2001;438:254–258.

    Article  CAS  PubMed  Google Scholar 

  5. Silveira AB, Freitas MA, de Oliveira EC, et al. Neuronal plasticity of the enteric nervous system is correlated with chagasic megacolon development. Parasitology. 2008;135:1337–1342.

    Article  PubMed  Google Scholar 

  6. Furness JB. The enteric nervous system. Malden: Blackwell; 2006.

    Google Scholar 

  7. Gabella G. Detection of nerve cells by a histochemical technic. Experientia. 1969;23:218–219.

    Article  Google Scholar 

  8. Furness J. Types of neurons in the enteric nervous system. J Auton Nerv Syst. 2000;81:87–96.

    Article  CAS  PubMed  Google Scholar 

  9. Leão EP, Pena CJ, de Araújo SM, Gomes ML. Physical therapy combined with a laxative fruit drink for treatment of chagasic megacolon. Arq Gastroenterol. 2011;48:52–57.

    PubMed  Google Scholar 

  10. Fabbro DL, Streiger ML, Arias ED, Bizai ML, del Barco M, Amicone NA. Trypanocide treatment among adults with chronic Chagas’ disease living in Santa Fé City (Argentina), over a mean follow-up of 21 years: parasitological, serological and clinical evolution. Rev Soc Bras Med Trop. 2007;40:1–10.

    Article  PubMed  Google Scholar 

  11. Santos Júnior JCM. Megacólon: parte II. Doença de Chagas. Ver Brás Coloproctol. 2002;4:266–277.

    Google Scholar 

  12. Pupulin AR, Marques-Araujo S, Toledo MJ, et al. Canova medication modifies parasitological parameters in mice infected with Trypanosoma cruzi. Exp Parasitol. 2010;126:435–440.

    Article  PubMed  Google Scholar 

  13. Schebeleski-Soares C, Occhi-Soares RC, Franzói-de-Moraes SM, et al. Preinfection aerobic treadmill training improves resistance against Trypanosoma cruzi infection in mice. Appl Physiol Nutr Metab. 2009;34:659–665.

    Article  PubMed  Google Scholar 

  14. Soares CS, Occhi RC, Carvalho LGL, et al. Produção de fator de necrose tumoral-alfa e peróxido de hidrogénio na infecção pelo Trypanosoma cruzi em camundongos submetidos ao exercício. Acta Scientiarum Health Sci. 2010;32:57–60.

    CAS  Google Scholar 

  15. Occhi RC, Soares CS, Franzói-De-Moraes SM, et al. Infecção experimental pelo Trypanosoma cruzi em camundongos: influência do exercício físico versus linhagens e sexos. Ver Brás Méd Esp. 2012;18:51–57.

    Google Scholar 

  16. Malm C. Exercise immunology: the current state of man and mouse. Sports Med. 2004;34:555–566.

    Article  PubMed  Google Scholar 

  17. Rosa LFBPC, Júnior MLB. Efeito do treinamento físico modulador positivo nas alterações no eixo neuroimunoendócrino em indivíduos com insuficiência cardíaca crônica: possível atuação do fator de necrose tumoral-α. Rev Brás Med Esporte. 2005;11:238–242.

    Google Scholar 

  18. Moreira NM, Santos FN, Toledo MJO, et al. Moderate physical exercise reduces parasitemia and protects colonic myenteric neurons in mice infected with Trypanosoma cruzi. Int J Exp Pathol. 2013 (accepted).

  19. Silva EA. Avaliação morfológica e quantitativa dos neurônios do plexo mientérico nas diferentas porções do ceco de ratos com seis e doze meses de idade, sedentários, e ratos submetidos à atividade física regular, com doze meses. 2006. Master’s dissertation. São Paulo: Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia; 2006.

  20. Lerman I, Harrison BC, Freeman K, et al. Genetic variability in forced and voluntary endurance exercise performance in seven inbred mouse strains. J Appl Physiol. 2002;92:2245–2255.

    PubMed  Google Scholar 

  21. Brener Z. Therapeutic activity and criterion of cure on mice experimentally infected with Trypanosoma cruzi. Rev Inst Med Trop. 1962;4:389–396.

    CAS  Google Scholar 

  22. Oliveira GM, Diniz RL, Batista W, et al. Faz ligand-dependent inflammatory regulation in acute myocarditis induced by Trypanosoma cruzi infection. Am J Pathol. 2007;171:79–86.

    Article  PubMed  Google Scholar 

  23. Miranda Neto MH, Molinari SL, Natali MR, Sant’Ana DM. Regional differences in the number type of myenteric neurons of the ileum of rats: a comparison of techniques of the neuronal evidentiation. Arq Neuropsiquiatr. 2001;59:54–59.

    Article  CAS  PubMed  Google Scholar 

  24. Maifrino LBM, Amaral SON, Watanabe I, Liberti EA, De Souza RR. Trypanosoma cruzi: preliminary investigation of NADH-positive and somastotatin-immunoreactive neurons in the myebteric plexus of the mouse colon during the infection. Exp Parasitol. 2005;111:224–229.

    Article  CAS  PubMed  Google Scholar 

  25. Clebis NK. Influência da atividade física sobre o envelhecimento inicial do plexo mioentérico do jejuno em ratos Wistar. Doctoral thesis. São Paulo: Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia; 2006.

  26. Martinez Gagliardo K, Clebis NK, Stabille SR, De Britto Mari R, De Sousa JM, De Souza RR. Exercise reduces inhibitory neuroactivity and protects myenteric neurons from age-related neurodegeneration. Auton Neurosci. 2008;141:31–37.

    Article  CAS  PubMed  Google Scholar 

  27. Silveira ABM. Estudo estrutural dos componentes do sistema nervoso entérico e de células inflamatórias: uma contribuição à imunopatologia do megacólon chagásico. Doctoral thesis. Belo Horizonte: Universidade Federal de Minas Gerais; 2007.

  28. Anker SD, Coats AJS. Cardiac cachexia: a syndrome with impaired survival and immune and neuroendocrine activation. Chest. 1999;115:836–847.

    Article  CAS  PubMed  Google Scholar 

  29. Abbas KA, Litchman AH, Pillai S. Imunologia celular e molecular. 6th ed. Rio de Janeiro: Elsevier; 2008.

    Google Scholar 

  30. Reis MM, Higuchi ML, Aiello VD, Benvenuti LA. Fatores de crescimento presentes no miocárdio de pacientes com cardiopatia chagásica crônica. Rev Soc Bras Med Trop. 2000;33:509–518.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Araucaria Foundation of Paraná for financial support.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Neide Martins Moreira or Silvana Marques de Araújo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreira, N.M., de Moraes, S.M.F., Dalálio, M.M.O. et al. Moderate Physical Exercise Protects Myenteric Metabolically More Active Neurons in Mice Infected with Trypanosoma cruzi . Dig Dis Sci 59, 307–314 (2014). https://doi.org/10.1007/s10620-013-2901-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-013-2901-9

Keywords

Navigation