Skip to main content

Advertisement

Log in

Inhibitory Effect of a Standardized Pomegranate Fruit Extract on Wnt Signalling in 1, 2-Dimethylhydrazine Induced Rat Colon Carcinogenesis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

De-regulation of Wnt signalling is increasingly being implicated in both experimental and human carcinogenesis including colon cancer.

Aims

Our goal was to identify possible dietary agents that block Wnt signalling as a step toward investigating new strategies for suppression of colon cancer. Pomegranate extract has emerged as an intriguing candidate due to its polyphenolic content.

Methods

We used a 1,2-dimethylhydrazine dihydrochloride (DMH)-induced rat colon carcinogenesis model to investigate the expression pattern of the main key players in Wnt signalling by reverse transcription polymerase chain reaction (RT-PCR) analysis.

Results

Our results showed that many Wnt-target genes, e.g., Wnt5a, frizzled receptor (FRZ)-8, β-catenin, T cell factor/lymphoid enhancer binding protein (Tcf4/Lef1), c-myc and cyclin D1, were up-regulated whereas adenomatous polyposis coli (APC) and axin1 exhibited down-regulation in colonic tissues of our DMH-colon cancer group compared with the normal group. Standardized pomegranate extract minimised all the aberrant alterations observed in the studied Wnt genes in colonic tissues of the DMH + pomegranate group as compared with the DMH-induced colon cancer group. This effect was also confirmed by the normalization of survival rate, inhibition of tumour incidence and a reduction of serum tumour marker carcinoembryonic antigen (CEA) level. Histopathological observations provided supportive evidence for the biochemical and molecular analyses.

Conclusions

Standardized pomegranate extract holds great promise in the field of colon cancer prevention by dietary agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

APC:

Adenomatous polyposis coli

AOM:

Azoxymethane

CK2:

Casein kinase2

CEA:

Carcinoembryonic antigen

DMH:

1,2-dimethylhydrazine

EA:

Ellagic acid

FRZ:

Frizzled receptors

GAEs:

Gallic acid equivalents

GSK3β:

Glycogen synthase kinase 3β

JNKs:

c-Jun N-terminal kinase

PKCa:

Protein kinase Ca

RT-PCR:

Reverse transcription polymerase chain reaction

Tcf/Lef:

T cell factor/lymphoid enhancer binding protein

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics. 2009. CA Cancer J Clin. 2009;59:225–249.

    Article  PubMed  Google Scholar 

  2. LaMont JT, O’Gorman TA. Experimental colon cancer. Gastroenterology. 1978;75:1157–1169.

    PubMed  CAS  Google Scholar 

  3. Femia AP, Caderni G. Rodent models of colon carcinogenesis for the study of chemopreventive activity of natural products. Planta Med. 2008;74:1602–1607.

    Article  PubMed  CAS  Google Scholar 

  4. Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer. 2008;8:387–398.

    Article  PubMed  CAS  Google Scholar 

  5. Moon RT, Brown JD, Torres M. WNTs modulate cell fate and behavior during vertebrate development. Trends Genet. 1997;13:157–162.

    Article  PubMed  CAS  Google Scholar 

  6. Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev. 1997;11:3286–3305.

    Article  PubMed  CAS  Google Scholar 

  7. Barker N, Clevers H. Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov. 2006;5:997–1014.

    Article  PubMed  CAS  Google Scholar 

  8. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.

    Article  PubMed  CAS  Google Scholar 

  9. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–850.

    Article  PubMed  CAS  Google Scholar 

  10. Kawano Y, Kypta R. Secreted antagonists of the Wnt signaling pathway. J Cell Sci. 2003;116:2627–2634.

    Article  PubMed  CAS  Google Scholar 

  11. Zorn AM. Wnt signalling: antagonistic Dickkopfs. Curr Biol. 2001;11:R592–R595.

    Article  PubMed  CAS  Google Scholar 

  12. Hernández-Maqueda JG, Luna-Ulloa LB, Santoyo-Ramos P, Castañeda-Patlán MC, Robles-Flores M. Protein kinase C delta negatively modulates canonical Wnt pathway and cell proliferation in colon tumor cell lines. PLoS ONE. 2013;8:e58540.

    Article  PubMed  Google Scholar 

  13. Clements WM, Lowy AM, Groden J. Adenomatous polyposis coli/beta-catenin interaction and downstream targets: altered gene expression in gastrointestinal tumors. Clin Colorectal Cancer. 2003;3:113–120.

    Article  PubMed  CAS  Google Scholar 

  14. Macleod RJ. Extracellular calcium-sensing receptor/PTH knockout mice colons have increased Wnt/β-catenin signaling, reduced non-canonical Wnt signaling, and increased susceptibility to azoxymethane-induced aberrant crypt foci. Lab Invest. 2013;1:520–527.

    Article  Google Scholar 

  15. Corpet DE, Pierre F. How good are rodent models of carcinogenesis in predicting efficacy in humans? A systematic review and meta-analysis of colon chemoprevention in rats, mice and men. Eur J Cancer. 2005;4:1911–9922.

    Article  Google Scholar 

  16. van Duijnhoven FJ, Bueno-De-Mesquita HB, Ferrari P, et al. Fruit, vegetables, and colorectal cancer risk: the European prospective investigation into cancer and nutrition. Am J Clin Nutr. 2009;89:1441–1452.

    Article  PubMed  Google Scholar 

  17. Zaid H, Silbermann M, Ben-Arye E, Saad B. Greco-arab and Islamic herbal-derived anticancer modalities: from tradition to molecular mechanisms. Evid Based Complement Alternat Med. 2012;2012:349040. doi:10.1155/2012/349040.

  18. Lansky EP, Newman RA. Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J Ethnopharmacol. 2007;109:177–206.

    Article  PubMed  CAS  Google Scholar 

  19. Mertens-Talcott SU, Jilma-Stohlawetz P, Rios J, Hingorani L, Derendorf H. Absorption, metabolism, and antioxidant effects of pomegranate (Punica granatum L.) polyphenols after ingestion of a standardized extract in healthy human volunteers. J Agric Food Chem. 2006;54:8956–8961.

    Article  PubMed  CAS  Google Scholar 

  20. Khan N, Afaq F, Mukhtar H. Cancer chemoprevention through dietary antioxidants: progress and promise. Antiox Redox Signal. 2008;10:475–510.

    Article  CAS  Google Scholar 

  21. Waly MI, Ali A, Guizani N, Al-Rawahi AS, Farooq SA, Rahman MS. Pomegranate (Punica granatum) peel extract efficacy as a dietary antioxidant against azoxymethane-induced colon cancer in rat. Asian Pac J Cancer Prev. 2012;13:4051–4055.

    Article  PubMed  Google Scholar 

  22. Syed DN, Chamcheu JC, Mukhtar VM. Pomegranate extracts and cancer prevention: molecular and cellular activities. Anticancer Agents Med Chem. 2012 Oct 12. (Epub ahead of print).

  23. Ismail T, Sestili P, Akhtar S. Pomegranate peel and fruit extracts: a review of potential anti-inflammatory and anti-infective effects. J Ethnopharmacol. 2012;143:397–405.

    Article  PubMed  CAS  Google Scholar 

  24. Neyrinck AM, Van Hée VF, Bindels LB, De Backer F, Cani PD, Delzenne NM. Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolaemia in high-fat diet-induced obese mice: potential implication of the gut microbiota. Br J Nutr. 2013;109:802–809.

    Article  PubMed  CAS  Google Scholar 

  25. Gil MI, Tomas-Barberan FA, Hess-Pierce B, Holcroft DM, Kader AA. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J Agric Food Chem. 2000;48:4581–4589.

    Article  PubMed  CAS  Google Scholar 

  26. Seeram NP, Adams LS, Henning SM, et al. In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J Nutr Biochem. 2005;16:360–367.

    Article  PubMed  CAS  Google Scholar 

  27. Heber D. Pomegranate ellagitannins. In: Benzie IFF, Wachtel-Galor S, eds. Herbal Medicine: Biomolecular and Clinical Aspects, 2nd edition, Chapter 10. Boca Raton (FL): CRC Press; 2011.

  28. Larrosa M, Tomas-Barberan FA, Espin JC. The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma Caco-2 cells by using the mitochondrial pathway. J Nutr Biochem. 2006;17:611–625.

    Article  PubMed  CAS  Google Scholar 

  29. Seeram NP, Lee R, Hardy ML, Heber D. Rapid large scale purification of ellagitannins from pomegranate husk, a byproduct of the commercial juice industry. Sep Purif Technol. 2005;41:49–55.

    Article  CAS  Google Scholar 

  30. Seeram NP, Zhang Y, McKeever R, et al. Pomegranate juice and extracts provide similar levels of plasma and urinary ellagitannin metabolites in human subjects. J Med Food. 2008;11:390–394.

    Article  PubMed  CAS  Google Scholar 

  31. Hope C, Planutis K, Planutiene M, et al. Low concentrations of resveratrol inhibit Wnt signal throughput in colon-derived cells: implications for colon cancer prevention. Mol Nutr Food Res. 2008;52:S52–S61.

    PubMed  Google Scholar 

  32. Suh Y, Afaq F, Johnson JJ, Mukhtar H. A plant flavonoid fisetin induces apoptosis in colon cancer cells by inhibition of COX2 and Wnt/EGFR/NF-κB-signaling pathways. Carcinogenesis. 2009;30:300–307.

    Article  PubMed  CAS  Google Scholar 

  33. Pacheco-Palencia LA, Noratto G, Hingorani L, Talcott ST, Mertens-Talcott SU. Protective effects of standardized pomegranate (Punica granatum L.) polyphenolic extract in ultraviolet irradiated human skin fibroblasts. J Agric Food Chem. 2008;56:8434–8441.

    Article  PubMed  CAS  Google Scholar 

  34. Singleton VL, Esau P. Phenolic substances in grapes and wine, and their significance. Adv Food Res. 1969; Suppl. 1:1–261.

    Google Scholar 

  35. Sharma P, Kaur J, Sanyal SN. Effect of etoricoxib, a cyclooxygenase-2 selective inhibitor on aberrant crypt formation and apoptosis in 1,2 dimethyl hydrazine induced colon carcinogenesis in rat model. Nutr Hosp. 2010;25:39–48.

    PubMed  CAS  Google Scholar 

  36. Hossin FLA. Effect of pomegranate (Punica granatum) peels and it’s extract on obese hypercholesterolemic rats. Pak J Nutr. 2009;8:1251–1257.

    Article  Google Scholar 

  37. Chomkczynski P, Sacchi N. Single step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform method. Anal Biochem. 1987;162:156–160.

    Google Scholar 

  38. Daudet N, Ripoll C, Molès JP, Rebillard G. Expression of members of Wnt and Frizzled gene families in the postnatal rat cochlea. Brain Res Mol Brain Res. 2002;105:98–107.

    Article  PubMed  CAS  Google Scholar 

  39. Wang QM, Zhang Y, Yang KM, Zhou HY, Yang HJ. Wnt/beta-catenin signaling pathway is active in pancreatic development of rat embryo. World J Gastroenterol. 2006;28:2615–2619.

    Google Scholar 

  40. Thévenod F, Wolff NA, Bork U, Lee WK, Abouhamed M. Cadmium induces nuclear translocation of beta-catenin and increases expression of c-myc and Abcb1a in kidney proximal tubule cells. Biometals. 2007;20:807–820.

    Article  PubMed  Google Scholar 

  41. Shaker OG, Moustafa W, Essmat S, Abdel-Halim M, El-Komy M. The role of interleukin-12 in the pathogenesis of psoriasis. Clin Biochem. 2006;39:119–125.

    Article  PubMed  CAS  Google Scholar 

  42. Chien AJ, Moon RT. WNTs and WNT receptors as therapeutic tools and targets in human disease processes. Front Biosci. 2007;12:448–457.

    Article  PubMed  CAS  Google Scholar 

  43. Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature. 2000;407:535–538.

    Article  PubMed  CAS  Google Scholar 

  44. Lee JS, Ishimoto A, Yanagawa S. Characterization of mouse disheveled (Dvl) proteins in Wnt/Wingless signaling pathway. J Biol Chem. 1999;274:21464–21470.

    Article  PubMed  CAS  Google Scholar 

  45. Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW. Serine phosphorylation-regulated biquitination and degradation of beta-catenin. J Biol Chem. 1997;272:24735–24738.

    Article  PubMed  CAS  Google Scholar 

  46. Behrens J, von Kries JP, Kühl M, et al. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. 1996;382:638–642.

    Article  PubMed  CAS  Google Scholar 

  47. Molenaar M, van de Wetering M, Oosterwegel M, et al. XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell. 1996;86:391–399.

    Article  PubMed  CAS  Google Scholar 

  48. Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982;31:99–109.

    Article  PubMed  CAS  Google Scholar 

  49. Katoh M. Expression and regulation of WNT1 in human cancer: up-regulation of WNT1 by beta-estradiol in MCF-7 cells. Int J Oncol. 2003;22:209–212.

    PubMed  CAS  Google Scholar 

  50. Bafico A, Liu G, Goldin L, Harris V, Aaronson SA. An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cell. 2004;6:497–506.

    Google Scholar 

  51. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127:469–480.

    Article  PubMed  CAS  Google Scholar 

  52. Goss KH, Groden J. Biology of the adenomatous polyposis coli tumor suppressor. J Clin Oncol. 2000;18:1967–1979.

    PubMed  CAS  Google Scholar 

  53. Shih IM, Yu J, He TC, Vogelstein B, Kinzler KW. The β-catenin binding domain of adenomatous polyposis coli is sufficient for tumor suppression. Cancer Res. 2000;60:1671–1676.

    PubMed  CAS  Google Scholar 

  54. Henderson BR. Nuclear-cytoplasmic shuttling of APC regulates β-catenin subcellular localization and turnover. Nat Cell Biol. 2000;2:653–660.

    Article  PubMed  CAS  Google Scholar 

  55. Rosin-Arbesfeld R, Townsley F, Bienz M. The APC tumor suppressor has a nuclear export function. Nature. 2000;406:1009–1012.

    Article  PubMed  CAS  Google Scholar 

  56. Korinek V, Barker N, Morin PJ, et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science. 1997;275:1784–1787.

    Article  PubMed  CAS  Google Scholar 

  57. Kikuchi A. Roles of Axin in the Wnt signalling pathway. Cell Signal. 1999;11:777–788.

    Article  PubMed  CAS  Google Scholar 

  58. Satoh S, Daigo Y, Furukawa Y, et al. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus mediated transfer of AXIN1. Nat Genet. 2000;24:245–250.

    Article  PubMed  CAS  Google Scholar 

  59. He TC, Sparks A, Rago C, et al. Identification of c-MYC as a target of the APC pathway. Science. 1998;281:1509–1512.

    Article  PubMed  CAS  Google Scholar 

  60. Tetsu O, McCormick F. β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;398:422–426.

    Article  PubMed  CAS  Google Scholar 

  61. Zhao JJ, Gjoerup OV, Subramanian RR, et al. Human mammary epithelial cell transformation through the activation of phosphatidylinositol 3-kinase. Cancer Cell. 2003;3:483–495.

    Google Scholar 

  62. Maeda K, Chung YS, Kang SM, et al. Cyclin D1 overexpression and prognosis in colorectal adenocarcinoma. Oncology. 1998;55:145–151.

    Article  PubMed  Google Scholar 

  63. Said TK, Medina D. Cell cyclins and cyclin dependent kinase activities in mouse mammary tumor development. Carcinogenesis. 1995;16:823–830.

    Article  PubMed  CAS  Google Scholar 

  64. Hur K, Kim JR, Yoon BI, et al. Overexpression of cyclin D1 and cyclin E in 1,2-dimethylhydrazine dihydrochloride-induced rat colon carcinogenesis. J Vet Sci. 2000;1:121–126.

    PubMed  CAS  Google Scholar 

  65. Collier JJ, Doan TT, Daniels MC, Schurr JR, Kolls JK, Scott DK. c-Myc is required for the glucose-mediated induction of metabolic enzyme genes. J Biol Chem. 2003;278:6588–6595.

    Article  PubMed  CAS  Google Scholar 

  66. Gatenby RA, Gawlinski ET. The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models. Cancer Res. 2003;63:3847–3854.

    PubMed  CAS  Google Scholar 

  67. Yamada N, Noguchi S, Mori T, Naoe T, Maruo K, Akao Y. Tumor-suppressive microRNA-145 targets catenin δ-1 to regulate Wnt/β-catenin signaling in human colon cancer cells. Cancer Lett. 2013 Mar 7. pii: S0304-3835(13)00223-1. doi:10.1016/j.canlet.2013.02.060.

  68. Adams LS, Seeram NP, Aggarwal BB, Takada Y, Sand D, Heber D. Pomegranate juice, total pomegranate ellagitannins, and punicalagin suppress inflammatory cell signaling in colon cancer cells. J Agric Food Chem. 2006;54:980–985.

    Article  PubMed  CAS  Google Scholar 

  69. Sharma M, Li L, Celver J, Killian C, Kovoor A, Seeram NP. Effects of fruit ellagitannin extracts, ellagic acid, and their colonic metabolite, urolithin A, on Wnt signaling. J Agric Food Chem. 2010;58:3965–3969.

    Article  PubMed  CAS  Google Scholar 

  70. Ogata Y, Murakami H, Sasatomi T, et al. Elevated preoperative serum carcinoembrionic antigen level may be an effective indicator for needing adjuvant chemotherapy after potentially curative resection of stage II colon cancer. J Surg Oncol. 2009;99:65–70.

    Article  PubMed  Google Scholar 

  71. Sekiguchi Y, Nakaniwa T, Kinoshita T, et al. Structural insight into human CK2R in complex with the potent inhibitor ellagic acid. Bioorg Med Chem Lett. 2009;19:2920–2923.

    Article  PubMed  CAS  Google Scholar 

  72. Dominguez I, Sonenshein GE, Seldin DC. Protein kinase CK2 in health and disease: CK2 and its role in Wnt and NF-κB signaling: linking development and cancer. Cell Mol Life Sci. 2009;66:1850–1857.

    Article  PubMed  CAS  Google Scholar 

  73. Selma MV, Espı′n JC, Tomás-Barberán FA. Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem. 2009;57:6485–6501.

    Article  PubMed  CAS  Google Scholar 

  74. Seeram NP, Aronson WJ, Zhang Y, et al. Pomegranate ellagitannin-derived metabolites inhibit prostate cancer growth and localize to the mouse prostate gland. J Agric Food Chem. 2007;55:7732–7737.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr Osama Helmy, Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt for performing the histopathological examinations of this study. The present work was supported by the financial assistance provided by Faculty of Pharmacy, Cairo University, Cairo, Egypt.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nermin Abdel Hamid Sadik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadik, N.A.H., Shaker, O.G. Inhibitory Effect of a Standardized Pomegranate Fruit Extract on Wnt Signalling in 1, 2-Dimethylhydrazine Induced Rat Colon Carcinogenesis. Dig Dis Sci 58, 2507–2517 (2013). https://doi.org/10.1007/s10620-013-2704-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-013-2704-z

Keywords

Navigation