Skip to main content
Log in

Radiofrequency Ablation for Dysplasia in Barrett’s Esophagus Restores β-Catenin Activation Within Esophageal Progenitor Cells

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aims

Endoscopic therapies for Barrett’s esophagus (BE) associated dysplasia, particularly radiofrequency ablation (RFA), are popular alternatives to surgery. The effect of such therapies on dysplastic stem/progenitor cells (SPC) is unknown. Recent studies suggest that AKT phosphorylation of β-Catenin occurs in SPCs and may be a marker of activated SPCs. We evaluate the effect of RFA in restoring AKT-mediated β-Catenin signaling in regenerative epithelium.

Methods

Biopsies were taken from squamous, non-dysplastic BE, dysplastic BE and esophageal adenocarcinoma (EAC). Also, post-RFA, biopsies of endoscopically normal appearing neosquamous epithelium were taken at 3, 6, and 12 months after successful RFA. Immunohistochemistry and Western blot analysis was performed for Pβ-Catenin552 (Akt-mediated phosphorylation of β-Catenin), Ki-67 and p53.

Results

There was no difference in Pβ-Catenin552 in squamous, GERD, small bowel and non-dysplastic BE. There was a fivefold increase in Pβ-Catenin552 in dysplasia and EAC compared to non-dysplastic BE (P < 0.05). Also, there was a persistent threefold increase in Pβ-Catenin552 in neosquamous epithelium 3 months after RFA compared to native squamous epithelium (P < 0.05) that correlated with increased Ki-67. Six months after RFA, Pβ-Catenin552 and Ki-67 are similar to native squamous epithelium.

Conclusions

Enhanced AKT-mediated β-Catenin activation is seen in BE-associated carcinogenesis. Three months after RFA, squamous epithelial growth from SPC populations exhibited increased levels of Pβ-Catenin552. This epithelial response becomes quiescent at 6 months after RFA. These data suggest that elevated Pβ-Catenin552 after RFA denotes a repair response in the neosquamous epithelium 3 months post-RFA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BE:

Barrett’s esophagus

EAC:

Esophageal adenocarcinoma

GERD:

Gastroesophageal reflux disease

SPC:

Stem/progenitor cell

RFA:

Radiofrequency ablation

HGD:

High grade dysplasia

References

  1. Camilleri M, Dubois D, Coulie B, et al. Prevalence and socioeconomic impact of upper gastrointestinal disorders in the United States: results of the US upper gastrointestinal study. Clin Gastroenterol Hepatol. 2005;3:543–552.

    Article  PubMed  Google Scholar 

  2. Morales CP, Souza RF, Spechler SJ. Hallmarks of cancer progression in Barrett’s oesophagus. Lancet. 2002;360:1587–1589.

    Article  PubMed  Google Scholar 

  3. Lagergren J, Bergstron R, Lingdgren A, et al. Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. New Engl J Med. 1999;340:825–831.

    Article  PubMed  CAS  Google Scholar 

  4. Shaheen NJ, Crosby NA, Bozymski EM, et al. Is there publication bias in the reporting of cancer risk in Barrett’s esophagus? Gastroenterology. 2000;119:587–589.

    Article  Google Scholar 

  5. Pohl H, Welch HG. The role of overdiagnosis and reclassification in the marked increase of esophageal adenocarcinoma incidence. J Natl Cancer Inst. 2009;97:142–146.

    Google Scholar 

  6. Rastogi A, Puli S, El-Serag H, et al. Incidence of esophageal adenocarcinoma in patients with Barrett’s esophagus and high-grade dysplasia, a meta-analysis. Gastrointest Endosc. 2008;67:394–398.

    Article  PubMed  Google Scholar 

  7. Birkmeyer JD, Sierwers AE, Finlayson EV, et al. Hospital volume and surgical mortality in the United States. New Engl J Med. 2002;346:1128–1137.

    Article  PubMed  Google Scholar 

  8. Sharma P, Wani S, Rastogi A. Endoscopic therapy for high-grade dysplasia in Barrett’s esophagus: ablate, resect, or both? Gastrointest Endosc. 2007;66:469–474.

    Article  PubMed  Google Scholar 

  9. Williams V, Watson T, Herbella F, et al. Esophagectomy for high grade dysplasia is safe, curative, and results in good alimentary outcome. Gastrointest Surg. 2007;11:1589–1597.

    Article  Google Scholar 

  10. Shaheen NJ, Sharma P, Overholt BF, et al. Radiofrequency ablation in Barrett’s esophagus with dysplasia. N Engl J Med. 2009;360:2277–2288.

    Article  PubMed  CAS  Google Scholar 

  11. Ganz R, Overholt B, Sharma V, et al. Circumferential ablation of Barrett’s esophagus that contains high-grade dysplasia: a US multicenter registry. Gastrointest Endosc. 2008;68:35–40.

    Article  PubMed  Google Scholar 

  12. Sharma V, Kim H, Das A, et al. A prospective pilot trial of ablation of Barrett’s esophagus with low-grade dysplasia using stepwise circumferential and focal ablation (halo system). Endoscopy. 2008;40:388–392.

    Article  Google Scholar 

  13. Gondrie J, Pour R, Sondermeijer C, et al. Effective treatment of early Barrett’s neoplasia with stepwise circumferential and focal ablation using the halo system. Endoscopy. 2008;40:370–379.

    Article  PubMed  CAS  Google Scholar 

  14. Pouw R, Gondrie J, Sondermeijer C. Eradication of Barrett esophagus with early neoplasia by radiofrequency ablation, with or without endoscopic resection. J Gastrointest Surg. 2008;12:1627–1636.

    Article  PubMed  Google Scholar 

  15. Goss KH, Groden J. Biology of the adenomatous polyposis coli tumor suppressor. J Clin Oncol. 2000;18:1967–1979.

    PubMed  CAS  Google Scholar 

  16. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127:469–480.

    Article  PubMed  CAS  Google Scholar 

  17. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–850.

    Article  PubMed  CAS  Google Scholar 

  18. Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin d1 in colon carcinoma cells. Nature. 1999;398:422–426.

    Article  PubMed  CAS  Google Scholar 

  19. Morin P, Sparks A, Korinek V, et al. Activation of beta-catenin-tcf signaling in colon cancer by mutations in beta-catenin or apc. Science. 1997;275:1787–1790.

    Article  PubMed  CAS  Google Scholar 

  20. Koppert LB, van der Velden AWVD, van de Wetering M, et al. Frequent loss of the axin1 locus but absence of axin1 mutations in adenocarcinomas of the gastro-oesophageal junction with nuclear beta-catenin expression. Brit J Cancer. 2004;90:892–899.

    Article  PubMed  CAS  Google Scholar 

  21. Fang D, Hawke D, Zheng Y, et al. Phosphorylation of beta-catenin by akt promotes beta-catenin transcriptional activity. J Biol Chem. 2007;282:11221–11229.

    Article  PubMed  CAS  Google Scholar 

  22. Lee G, Goretsky T, Managlia E, et al. Phosphoinositide 3-kinase signaling mediates beta-catenin activation in intestinal epithelial stem and progenitor cells in colitis. Gastroenterology. 2010;139:869–881.

    Article  PubMed  CAS  Google Scholar 

  23. Brown JB, Lee G, Managlia E, et al. Mesalamine inhibits epithelial beta-catenin activation in chronic ulcerative colitis. Gastroenterology. 2010;138:595–605.

    Article  PubMed  CAS  Google Scholar 

  24. Clement G, Braunschweig R, Pasquier N, et al. Alterations of the wnt signalling pathway during the neoplastic progression of Barrett’s esophagus. Oncogenomics. 2006;25:3084–3092.

    Article  CAS  Google Scholar 

  25. Veeramachaneni N, Kubokura H, Lin L, et al. Down-regulation of beta catenin inhibits the growth of esophageal carcinoma cells. J Thorac Cardiovasc Surg. 2004;127:92–98.

    Article  PubMed  CAS  Google Scholar 

  26. Bian Y, Osterheld M, Bosman F, et al. Nuclear accumulation of beta-catenin is a common and early event during neoplastic progression of Barrett’s esophagus. Am J Clin Pathol. 2000;114:589–590.

    Article  Google Scholar 

  27. Gonzalez M, Artimez M, Rodrigo L, et al. Mutation analysis of the p53, apc, and p16 genes in the Barrett’s oesophagus, dysplasia, and adenocarcinoma. J Clin Pathol. 1997;50:212–217.

    Article  PubMed  CAS  Google Scholar 

  28. Odze R, Lauwers G. Histopathology of Barrett’s esophagus after ablation and endoscopic mucosal resection therapy. Endoscopy. 2008;40:1008–1015.

    Article  PubMed  CAS  Google Scholar 

  29. Kalabis J, Oyama K, Okawa T, et al. A subpopulation of mouse esophageal basal cells has properties of stem cells with the capacity for self-renewal and lineage specification. J Clin Investig. 2008;118:3860–3869.

    PubMed  CAS  Google Scholar 

  30. Flejou J. Barrett’s oesophagus: from metaplasia to dysplasia and cancer. Gut. 2005;54:i6–i12.

    Article  PubMed  Google Scholar 

  31. Sansom O, Reed K, Hayes A, et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev. 2004;18:1385–1390.

    Article  PubMed  CAS  Google Scholar 

  32. Barker N, Ridgeway R, van Es J, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 2009;457:608–611.

    Article  PubMed  CAS  Google Scholar 

  33. Yuan TL, Cantley LC. Pi3k pathway alterations in cancer: variations on a theme. Oncogene. 2008;27:5497–5510.

    Article  PubMed  CAS  Google Scholar 

  34. El Sagatys C, Garrett C, Boulware D, et al. Activation of the serine/threonine protein kinase akt during the progression of Barrett neoplasia. Hum Pathol. 2007;38:1526–1531.

    Article  Google Scholar 

  35. Beales I, Ogunwobi O, Cameron E, et al. Activation of Akt is increased in the dysplasia-carcinoma sequence in Barrett’s oesophagus and contributes to increased proliferation and inhibition of apoptosis: a histopathological and function study. BMC Cancer. 2007;7.

  36. Jaiswal K, Tello V, Lopez-Guzman C, et al. Bile salt exposure causes phophatidyl-inositol-3-kinase mediated proliferation in a Barrett’s adenocarcinoma cell line. Surgery. 2004;136:160–168.

    Article  PubMed  Google Scholar 

  37. Marsh V, Winton D, Williams G, et al. Epithelial pten is dispensable for intestinal hemostasis but suppresses adenoma development and progression after apc mutation. Nat Genet. 2008;40:1436–1444.

    Article  PubMed  CAS  Google Scholar 

  38. Pouw RE, Gondrie JJ, Rygiel AM, et al. Properties of the neosquamous epithelium after radiofrequency ablation of Barrett’s esophagus containing neoplasia. Am J Gastroenterol. 2009;104:1366–1373.

    Article  PubMed  Google Scholar 

  39. Bovolenta P, Esteve P, Ruiz J, et al. Beyond Wnt inhibition. New functions of secreted frizzled-related proteins in development and disease. J Cell Sci. 2008;121:737–746.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang H, Spechler S, Souza R, et al. Esophageal aenocarcinoma arising in Barrett esophagus. Cancer Lett. 2009;275:170–177.

    Article  PubMed  CAS  Google Scholar 

  41. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;1000:57–70.

    Article  Google Scholar 

Download references

Acknowledgments

T. A. Barrett was supported by NIH, R01DK-54778 and R01DK-47073.

Conflict of interest

No conflicts of interest exist for any of the authors of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Barrett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnan, K., Komanduri, S., Cluley, J. et al. Radiofrequency Ablation for Dysplasia in Barrett’s Esophagus Restores β-Catenin Activation Within Esophageal Progenitor Cells. Dig Dis Sci 57, 294–302 (2012). https://doi.org/10.1007/s10620-011-1899-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-011-1899-0

Keywords

Navigation