Skip to main content

The Cellular Origin of Barrett’s Esophagus and Its Stem Cells

  • Chapter
  • First Online:
Stem Cells Heterogeneity - Novel Concepts

Abstract

The incidence of esophageal adenocarcinoma is rapidly increasing in Western countries. This is despite the introduction of sophisticated endoscopic techniques and our ability to readily monitor the presumed precursor lesion known as Barrett’s esophagus. Preemptive approaches, including radiofrequency ablation (RFA), and photodynamic therapy (PDT) for Barrett’s esophagus and dysplasia are achieving dramatic initial results. Although the long-term efficacy of these nonspecific ablative therapies is awaiting longitudinal studies, reports of recurrences are increasing. More targeted therapies, particularly directed at the stem cells of Barrett’s esophagus, demand knowing the origin of this intestinal metaplasia (IM). The prevailing concept holds that Barrett’s esophagus arises from the “transcommitment” of esophageal stem cells to produce an intestine-like epithelium. An alternative explanation derives from the discovery of a discrete population of residual embryonic cells (RECs) existing at the gastroesophageal junction in normal individuals that expands and colonizes regions of the esophagus denuded by chronic reflux. These RECs form IM within days of esophageal injury, suggesting a novel mechanism of tumorigenesis.

A corollary of this work is that the Barrett’s stem cell is distinct from that of the squamous epithelium and, once identified, will form the basis of new preemptive strategies for addressing Barrett’s and its related neoplasia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barrett NR (1950) Chronic peptic ulcerz of the œophagus and ‘œsophagitis. Br J Surg 38(150):175–182

    Article  CAS  Google Scholar 

  2. Correa P (1992) Human gastric carcinogenesis: a multistep and multifactorial process—First American Cancer Society award lecture on cancer epidemiology and prevention. Cancer Res 52(24):6735–6740

    CAS  PubMed  Google Scholar 

  3. Bremner CG, Lynch VP, Ellis FH (1970) Barrett’s esophagus: congenital or acquired? An experimental study of esophageal mucosal regeneration in the dog. Surgery 68(1):209–216

    CAS  PubMed  Google Scholar 

  4. Hamilton SR, Yardley JH (1977) Regeneration of cardiac type mucosa and acquisition of Barrett mucosa after esophagogastrostomy. Gastroenterology 72(4):669–675

    CAS  PubMed  Google Scholar 

  5. Gillen P, Keeling P, Byrne PJ, West AB, Hennessy TPJ (1988) Experimental columnar metaplasia in the canine oesophagus. Br J Surg 75(2):113–115

    Article  CAS  Google Scholar 

  6. Lörinc E, Öberg S (2012) Submucosal glands in the columnar-lined oesophagus: evidence of an association with metaplasia and neosquamous epithelium. Histopathology 61(1):53–58

    Article  Google Scholar 

  7. Van Nieuwenhove Y, Willems G (1998) Gastroesophageal reflux triggers proliferative activity of the submucosal glands in the canine esophagus. Dis Esophagus 11(2):89–93

    Article  Google Scholar 

  8. Coad RA et al (2005) On the histogenesis of barrett’s oesophagus and its associated squamous islands: a three-dimensional study of their morphological relationship with native oesophageal gland ducts. J Pathol 206(4):388–394

    Article  Google Scholar 

  9. van Nieuwenhove Y, Destordeur H, Willems G (2001) Spatial distribution and cell kinetics of the glands in the human esophageal mucosa. Eur J Morphol 39(3):163–168

    Article  Google Scholar 

  10. Glickman JN, Yang A, Shahsafaei A, McKeon F, Odze RD (2001) Expression of P53-related protein P63 in the gastrointestinal tract and in esophageal metaplastic and neoplastic disorders. Hum Pathol 32(11):1157–1165

    Article  CAS  Google Scholar 

  11. Yamamoto Y et al (2016) Mutational spectrum of Barrett’s stem cells suggests paths to initiation of a precancerous lesion. Nat Commun 7:10380

    Article  CAS  Google Scholar 

  12. Souza RF, Krishnan K, Spechler SJ (2008) Acid, bile, and CDX: the ABCs of making Barrett’s metaplasia. Am J Physiol Gastrointest Liver Physiol 295(2):G211–G218

    Article  CAS  Google Scholar 

  13. Mutoh H et al (2002) Conversion of gastric mucosa to intestinal metaplasia in Cdx2-expressing transgenic mice. Biochem Biophys Res Commun 294(2):470–479

    Article  CAS  Google Scholar 

  14. Kumar PA et al (2011) Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell 147(3):525–538

    Article  CAS  Google Scholar 

  15. Runge TM, Abrams JA, Shaheen NJ (2015) Epidemiology of Barrett’s esophagus and esophageal adenocarcinoma. Gastroenterol Clin N Am 44(2):203–231

    Article  Google Scholar 

  16. Corey KE, Schmitz SM, Shaheen NJ (2003) Does a surgical antireflux procedure decrease the incidence of esophageal adenocarcinoma in barrett’s esophagus? A meta-analysis. Am J Gastroenterol 98(11):2390–2394

    Article  Google Scholar 

  17. Herfs M et al (2012) A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. Proc Natl Acad Sci U S A 109(26):10516–10521

    Article  CAS  Google Scholar 

  18. Wang X et al (2011) Residual embryonic cells as precursors of a Barrett’s-like metaplasia. Cell 145(7):1023–1035

    Article  CAS  Google Scholar 

  19. Xian W, Ho YK, Crum CP, McKeon F (2012) Cellular origin of Barrett’s esophagus: Controversy and therapeutic implications. Gastroenterol 142:1424–1430

    Google Scholar 

  20. Maley CC, Rustgi AK (2006) Barrett’s esophagus and its progression to adenocarcinoma. J Natl Compr Cancer Netw 4(4):367–374

    Article  Google Scholar 

  21. Hvid-Jensen F, Pedersen L, Drewes AM, Sørensen HT, Funch-Jensen P (2011) Incidence of adenocarcinoma among patients with Barrett’s esophagus. N Engl J Med 365(15):1375–1383

    Article  CAS  Google Scholar 

  22. Edgren G, Adami H-O, Weiderpass E, Vainio EW, Nyrén O (2013) A global assessment of the oesophageal adenocarcinoma epidemic. Gut 62(10):1406–1414

    Article  Google Scholar 

  23. Reid BJ, Li X, Galipeau PC, Vaughan TL (2010) Barrett’s oesophagus and oesophageal adenocarcinoma: time for a new synthesis. Nat Rev Cancer 10(2):87–101

    Article  CAS  Google Scholar 

  24. Sharma P (2009) Clinical practice. Barrett’s esophagus. N Engl J Med 361(26):2548–2556

    Article  CAS  Google Scholar 

  25. Haggitt RC (1994) Barrett’s esophagus, dysplasia, and adenocarcinoma. Hum Pathol 25(10):982–993

    Article  CAS  Google Scholar 

  26. Naef AP, Savary M, Ozzello L (1975) Columnar-lined lower esophagus: an acquired lesion with malignant predisposition. Report on 140 cases of Barrett’s esophagus with 12 adenocarcinomas. J Thorac Cardiovasc Surg 70(5):826–835

    CAS  PubMed  Google Scholar 

  27. Ross-Innes CS et al (2015) “Evaluation of a minimally invasive cell sampling device coupled with assessment of trefoil factor 3 expression for diagnosing Barrett’s esophagus: a multi-center case–control study” edited by E. L. Franco. PLoS Med 12(1):e1001780

    Article  Google Scholar 

  28. Cotton CC, Haidry R, Thrift AP, Lovat L, Shaheen NJ (2018) Development of evidence-based surveillance intervals after radiofrequency ablation of Barrett’s esophagus. Gastroenterology 155(2):316–326.e6

    Article  Google Scholar 

  29. Shaheen NJ et al (2009) Radiofrequency ablation in Barrett’s esophagus with dysplasia. N Engl J Med 360(22):2277–2288

    Article  CAS  Google Scholar 

  30. Haidry R, Lovat L (2015) Long-term durability of radiofrequency ablation for Barrettʼs-related neoplasia. Curr Opin Gastroenterol 31(4):316–320

    Article  CAS  Google Scholar 

  31. Titi M et al (2012) Development of subsquamous high-grade dysplasia and adenocarcinoma after successful radiofrequency ablation of Barrett’s esophagus. Gastroenterology 143(3):564–566.e1

    Article  Google Scholar 

  32. Vaccaro BJ et al (2011) Detection of intestinal metaplasia after successful eradication of Barrett’s esophagus with radiofrequency ablation. Dig Dis Sci 56(7):1996–2000

    Article  Google Scholar 

  33. Sato T, Clevers H (2013) Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340(6137):1190–1194

    Article  CAS  Google Scholar 

  34. Wang X et al (2015) Cloning and variation of ground state intestinal stem cells. Nature 522(7555):173–178

    Article  CAS  Google Scholar 

  35. Xian W, McKeon F (2017) Barrett’s stem cells as a unique and targetable entity. Cell Mol Gastroenterol Hepatol. 2017 Apr 26; 4(1):161–164

    Google Scholar 

  36. Dulak AM et al (2012) Gastrointestinal adenocarcinomas of the esophagus, stomach, and colon exhibit distinct patterns of genome instability and oncogenesis. Cancer Res 72(17):4383–4393

    Article  CAS  Google Scholar 

  37. Qumseya BJ et al (2016) Adverse events after radiofrequency ablation in patients with barrett’s esophagus: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 14(8):1086–1095.e6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wa Xian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xian, W. et al. (2019). The Cellular Origin of Barrett’s Esophagus and Its Stem Cells. In: Birbrair, A. (eds) Stem Cells Heterogeneity - Novel Concepts. Advances in Experimental Medicine and Biology, vol 1123. Springer, Cham. https://doi.org/10.1007/978-3-030-11096-3_5

Download citation

Publish with us

Policies and ethics