Skip to main content

Advertisement

Log in

A 2-µm Continuous-Wave Laser System for Safe and High-Precision Dissection During NOTES Procedures

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Introduction

Lasers 2-µm in wavelength offer efficient tissue cutting with limited thermal damage in biological tissue.

Objective

To evaluate the dissection capabilities of a 2-μm continuous-wave laser for NOTES procedures.

Methods and Procedures

We conducted 18 acute animal experiments. Group 1 (three animals): transcolonic access to the peritoneal cavity (15-W transcolonic laser puncture, balloon dilation over the laser probe). Group 2 (six animals): transcolonic access with needle-knife puncture and balloon dilation. Group 3 (three animals): transgastric access to the peritoneal cavity (similar technique as group 1) followed by laser-assisted dissection of the kidney. In one animal of group 3, a therapeutic target (hematoma) was created by percutaneous puncture of the kidney. Group 4 (six animals): transgastric access (similar to the technique of group 2).

Results

Translumenal access to the peritoneal cavity was achieved in 2–3 min in group 1 (significantly shorter than with the needle-knife-assisted technique, 4–5 min, p = 0.02) and in 7–10 min in group 3 (compared to 6–17 min in group 4, p = 0.88). In group 3, laser dissection of the parietal peritoneum and of perinephric connective tissue allowed access to the retroperitoneum with complete removal of a blood collection in the animal with puncture trauma. Laser dissection demonstrated good maneuverability, clean and rapid cutting, and excellent hemostasis. Peritoneoscopy and necropsy showed no damage of targeted tissue and surrounding organs.

Conclusions

The 2-μm continuous-wave laser system showed promising capabilities for highly precise and safe dissection during NOTES procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Giday SA, Kantsevoy SV, Kalloo AN. Current status of natural orifice translumenal surgery. Gastrointest Endosc Clin N Am. 2007;17:595–604.

    Article  PubMed  Google Scholar 

  2. Rattner D, Kalloo A. ASGE/SAGES Working Group on Natural Orifice Translumenal Endoscopic Surgery. October 2005. Surg Endosc. 2006;20:329–333.

    Article  CAS  PubMed  Google Scholar 

  3. Fujishiro M. Endoscopic submucosal dissection for stomach neoplasms. World J Gastroenterol. 2006;12:5108–5112.

    PubMed  Google Scholar 

  4. Fried NM. High-power laser vaporization of the canine prostate using a 110 W Thulium fiber laser at 1.91 µm. Lasers Surg Med. 2005;36:52–56.

    Article  PubMed  Google Scholar 

  5. Fried NM, Murray KE. High-power thulium fiber laser ablation of urinary tissues at 1.94 µm. J Endourol. 2005;19:25–31.

    Article  PubMed  Google Scholar 

  6. Zeitels SM, Burns JA, Akst LM, Hillman RE, Broadhurst MS, Anderson RR. Office-based and microlaryngeal applications of a fiber-based thulium laser. Ann Otol Rhinol Laryngol. 2006;115:891–896.

    PubMed  Google Scholar 

  7. Bach T, Herrmann TR, Cellarius C, Gross AJ. Bladder neck incision using a 70 W 2 micron continuous wave laser (RevoLix). World J Urol. 2007;25:263–267.

    Article  PubMed  Google Scholar 

  8. Bui MH, Breda A, Gui D, Said J, Schulam P. Less smoke and minimal tissue carbonization using a thulium laser for laparoscopic partial nephrectomy without hilar clamping in a porcine model. J Endourol. 2007;21:1107–1111.

    Article  PubMed  Google Scholar 

  9. Burns JA, Kobler JB, Heaton JT, Lopez-Guerra G, Anderson RR, Zeitels SM. Thermal damage during thulium laser dissection of laryngeal soft tissue is reduced with air cooling: ex vivo calf model study. Ann Otol Rhinol Laryngol. 2007;116:853–857.

    PubMed  Google Scholar 

  10. Koufman JA, Rees CJ, Frazier WD, et al. Office-based laryngeal laser surgery: a review of 443 cases using three wavelengths. Otolaryngol Head Neck Surg. 2007;137:146–151.

    Article  PubMed  Google Scholar 

  11. Seitz M. Editorial comment on: thulium laser versus standard transurethral resection of the prostate: a randomized prospective trial. Eur Urol. 2008;53:390.

    Article  PubMed  Google Scholar 

  12. Xia SJ, Zhuo J, Sun XW, Han BM, Shao Y, Zhang YN. Thulium laser versus standard transurethral resection of the prostate: a randomized prospective trial. Eur Urol. 2008;53:382–389.

    Article  PubMed  Google Scholar 

  13. Gao X, Ren S, Xu C, Sun Y. Thulium laser resection via a flexible cystoscope for recurrent non-muscle-invasive bladder cancer: initial clinical experience. BJU Int. 2008;102(9):1115–1118.

    Google Scholar 

  14. Quaden R, Attmann T, Schunke M, Theisen-Kunde D, Cremer J, Lutter G. Percutaneous aortic valve replacement: endovascular resection of human aortic valves in situ. J Thorac Cardiovasc Surg. 2008;135:1081–1086.

    Article  PubMed  Google Scholar 

  15. Ayari-Khalfallah S, Fuchsmann C, Froehlich P. Thulium laser in airway diseases in children. Curr Opin Otolaryngol Head Neck Surg. 2008;16:55–59.

    Article  PubMed  Google Scholar 

  16. Treat MR, Trokel SL, Reynolds RD, et al. Preliminary evaluation of a pulsed 2.15-micron laser system for fiberoptic endoscopic surgery. Lasers Surg Med. 1988;8:322–326.

    Article  CAS  PubMed  Google Scholar 

  17. Wendt-Nordahl G, Huckele S, Honeck P, et al. Systematic evaluation of a recently introduced 2-micron continuous-wave thulium laser for vaporesection of the prostate. J Endourol. 2008;22:1041–1045.

    Article  PubMed  Google Scholar 

  18. Sumiyama K, Gostout CJ. Techniques for transgastric access to the peritoneal cavity. Gastrointest Endosc Clin N Am. 2008;18:235–244.

    Article  PubMed  Google Scholar 

  19. Ryou M, Thompson C. Techniques for transanal access to the peritoneal cavity. Gastrointest Endosc Clin N Am. 2008;18:245–260.

    Article  PubMed  Google Scholar 

  20. Sohn DK, Turner BG, Gee DW, Willingham FF, Sylla P, Cizginer S, Konuk Y, Brugge WR, Rattner DW. Reducing the unexpectedly high rate of injuries caused by NOTES gastrotomy creation. Surg Endosc. 2010;24(2):277–282.

    Google Scholar 

  21. Liang JH, Xu CL, Wang LH, Hou JG, Gao XF, Sun YH. Irrigation eliminates smoke formation in laser laparoscopic surgery: ex vivo results. Surg Laparosc Endosc Percutan Tech. 2008;18:391–394.

    Article  PubMed  Google Scholar 

  22. Jagannath SB, Kantsevoy SV, Vaughn CA, et al. Peroral transgastric endoscopic ligation of fallopian tubes with long-term survival in a porcine model. Gastrointest Endosc. 2005;61:449–453.

    Article  PubMed  Google Scholar 

  23. Kantsevoy SV, Jagannath SB, Niiyama H, et al. Endoscopic gastrojejunostomy with survival in a porcine model. Gastrointest Endosc. 2005;62:287–292.

    Article  PubMed  Google Scholar 

  24. Kantsevoy SV, Hu B, Jagannath SB, et al. Transgastric endoscopic splenectomy: is it possible? Surg Endosc. 2006;20:522–525.

    Article  CAS  PubMed  Google Scholar 

  25. Kantsevoy SV, Jagannath SB, Niiyama H, et al. A novel safe approach to the peritoneal cavity for per-oral transgastric endoscopic procedures. Gastrointest Endosc. 2007;65:497–500.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony N. Kalloo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dray, X., Donatelli, G., Krishnamurty, D.M. et al. A 2-µm Continuous-Wave Laser System for Safe and High-Precision Dissection During NOTES Procedures. Dig Dis Sci 55, 2463–2470 (2010). https://doi.org/10.1007/s10620-010-1214-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-010-1214-5

Keywords

Navigation