Chronic daily oral dosing of AMB or AdvAMB dosed prior to and concomitantly with DSS significantly inhibited colitis produced by replacement of drinking water with a solution of 5% DSS. AMB and AdvAMB lowered the incidence of diarrhea and occult blood in the feces as indicated by a decrease in the DAI. This was especially evident when the weight parameter was not used (DAINWT). The rats used in the study averaged between 300 and 350 g in order to provide sufficient blood for the analysis. The colitis produced was less severe than seen in smaller rats and mice. A longer exposure to DSS would likely have produced significant weight loss. There have been no published studies, to our knowledge, using rats of equivalent size in a DSS colitis model.
Shortening of the colon has been described in rats or mice receiving DSS [12, 14]. The cause of this shortening has not been fully explained, but is a consistent finding in animal models of colitis. Using this criterion, both doses of AdvAMB and the high dose of AMB significantly inhibited the shortening in a dose-related manner. The percent inhibition was dose related and was greater than 47% for all doses. This inhibition is similar to or greater than that observed in studies with agents known to be effective clinically [15].
DSS was shown to produce a significant increase in monocyte count that was inhibited by AMB and AdvAMB. This effect was even more prominent if results were analyzed as a percent of mean monocyte count in the vehicle plus water group. The only significant changes in blood components in rats having access to either DSS or water and treatment with AMB or AdvAMB was a dose-related decrease in absolute monocyte counts. The effect on monocytes is especially interesting since Grip et al. [18] indicated that gut-resident and circulating monocytes are thought to be required for the initiation and maintenance of inflammatory bowel diseases.
The second portion of the study was designed to evaluate the safety of AMB and AdvAMB plus tap water when administered daily for 14 days. No significant changes in any of the parameters studied were observed. There were no treatment-related changes in body weight and no indication of any observation of gross pathology in the colon. Rats receiving low and high doses of AMB or AdvAMB and having access to tap water throughout the study showed no significant change in any of the disease indexes compared to vehicle, no indication of change in feces consistency or occult blood in the feces, nor any changes in colonic length. All control animals, as well as those dosed, had a minimal positive response in the occult blood test. This may have been due to the lab chow they were fed as undigested chow produces a positive result in the occult blood assay (data not shown). All blood values, clinical chemistry and cytokine analysis were within the control range.
Several of the components of AMB and AdvAMB have been shown to have effects on inflammatory diseases of the gastrointestinal tract either in animal models or on human disease. Langmead et al. [1] evaluated the gel from the aloe plant administered orally in a double-blind, randomized, placebo-controlled trial in the treatment of mild to moderate ulcerative colitis in 44 hospital out-patients given oral aloe vera gel (100 ml aloe vera gel) or placebo solution. Clinical remission, improvement and response occurred in nine of 30 patients given aloe vera, compared with one of 14 patients taking placebo. The Simple Clinical Colitis Activity Index and histological scores decreased significantly during treatment with aloe vera, but not with placebo. They concluded that oral aloe vera gel taken for 4 weeks produced a clinical response more often than placebo; it also reduced the histological disease activity and appeared to be safe. Langmead et al. [2] also showed a dose-dependent inhibitory effect on reactive oxygen metabolite production in an in vitro study using human colonic cells inhibiting the production of prostaglandin E2, but without effects on thromboxane B2 production. Aloe vera treatment (200 mg/kg PO) reduced leukocyte adherence and TNFγ level, elevated IL-10 level and promoted gastric ulcer healing. Korkina et al. [19] evaluated the effects of a natural antioxidant preparation based on aloe vera and ubiquinone for potential activity against DSS-induced colonic inflammation and alterations of the intestinal electrophysiological activity and motility. They used 5% dextran sulfate for 3 days, followed by 1% DSS for 4 days administered in drinking water. Lipoperoxidation, superoxide production, glutathione peroxidase, glutathione-S-transferase activities, and reduced glutathione content increased, and superoxide dismutase and catalase activities were sharply suppressed in colon tissue. Inflammation, electrical/mechanical impairment in the gut, and most of the oxidative stress parameters were improved substantially by pre-treatment, but not by simultaneous or post treatment.
Arabinogalactan has been reported to have positive effects on fecal chemistry [16]. Arabinogalactan is a non-digestible soluble dietary fiber that resists hydrolytic enzyme action and enters the large bowel intact where it is fermented by resident microflora. The effect of 15 and 30 g orally per day of a commercially available arabinogalactan from Western Larch produced significant increases in total fecal anaerobes. A significant increase in Lactobacillus spp. was observed when subjects consumed arabinogalactan for a total of 6 weeks with no significant changes in other microflora, fecal enzyme activity, transit time, frequency, fecal weight, fecal pH and short-chain fatty acids.
Matsumoto et al. [20] showed that fucoidans derived from Cladosiphon okamuranus Tokida ameliorates chronic colitis in the rat through the down-regulation of interleukin-6 production on colonic epithelial cells. Previous studies showed the interleukin (IL-6 STAT-3) signal was up-regulated in inflammatory bowel disease in both humans and animal models [21]. Fucoidan treatment caused a decrease in the DAI, and myeloperoxidase activity decreased in mice fed Cladosiphon fucoidan, but not Fucus fucoidan. The levels of IL-6 mRNA in colonic epithelial cells were lower in colitis-induced Balb/c mice fed Cladosiphon fucoidan than those fed a standard diet. Fucoidan improves mouse chronic colitis by down regulating the synthesis of IL-6 in the colonic epithelial cells. The authors concluded that fucoidan derived from C. Tokida might be useful as a dietary substance for patients with inflammatory bowel disease.
Rice starch type 3 (115 g/kg) was shown to block DSS-induced colonic shortening in rats after 7 days of dosing while fructo-oligosaccharides did not [22]. Rice starch is a substrate yielding high levels of butyrate [5]. Butyrate is recognized to be effective in patients with Crohn’s disease and ulcerative colitis when administered by enema [23]; however, the effect is not present when given orally [24]. Sprague-Dawley rats received water or DSS and ceco-colonic inflammatory injuries assessed macroscopically and histologically. At days 7 and 14, cecal and distal macroscopic and histological observations were improved in rice starch plus DSS and the butyrate levels were higher in the cecum of the rice starch plus DSS rats.
Glucosamine has been observed to decrease proinflammatory cytokine-induced ICAM-1 production in human conjunctival cells in vitro [25] and inhibit TNFα and IFNγ-induced production of ICAM 1 in human retinal cells in vitro [26]. Although these studies were not done in gastrointestinal tissue, ICAM 1 has been implicated in production of DSS-induced colitis in mice [15]. Glucosamine has also been shown to protect against ibuprofen-induced gastric lesions in rats [6], significantly prevented ibuprofen-induced depletion of protein and glycoprotein components and maintained the activities of membrane-bound ATPases as compared to the untreated ulcer induced group of rats. The authors ascribe the effectiveness of glucosamine in part to strengthening the mucosal barrier by increasing mucosal glycoprotein synthesis and to its free radical scavenging property.
AMB and AdvAMB both were effective in interfering with the pathological effects of 5% DSS-induced colitis in the rat. Although the colitis was not severe, shortening of the colon, the presence of occult blood in the feces and either a change in consistency of the fecal pellets or diarrhea were noted. All these were attenuated by daily dosing of AMB and AdvAMB. The low doses tested were equivalent to the usual human dose.
Polysaccharides found in aloe vera have been reported to have antiviral, antibacterial, antifungal and antitumor activity [27]. This and the multiple effects of the other components of AMB and AdvAMB on butyrate, ICAM-1, TNFγ, etc. may be additive and have a positive effect on the pathology and symptoms of IBD. A combination of these plant-derived materials may be more effective than any one administered alone. However, this conclusion would require additional testing of the individual components.
Daily oral dosing with AMB and AdvAMB were both shown to have significant effects in inhibiting DSS-induced colitis in rats at doses that are safe, even when administered at multiples of the human dose for 14 days. Administration of either of these formulations may be useful in improving the quality of life in IBD patients.