Skip to main content

Advertisement

Log in

Rose Hip and Lactobacillus plantarum DSM 9843 Reduce Ischemia/Reperfusion Injury in the Mouse Colon

  • Original Paper
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Ischaemia/reperfusion (I/R) of the colon is an inflammatory condition that leads to tissue injury where reactive oxygen species play a central role. Rose hip is rich in biologically active polyphenols with antioxidative properties, which may be important in prevention of lipid peroxidation. L. plantarum DSM 9843 possesses enzymatic activity towards polyphenols. The objective of this study was to define the effect of oral administration of L. plantarum and rose hip in I/R injury. Administration of rose hip and L. plantarum significantly decreased MDA levels in caecum tissue and Enterobacteriaceae counts in caecum stool. A positive correlation between MDA levels and Enterobacteriaceae counts was found. The results support a synergistic/additive role of rose hip and L. plantarum in reducing lipid peroxidation. Therefore rose hip and L. plantarum may be used as a pretreatment to tissue injuries, e.g. colonic surgery, organ transplantation and vascular surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Berg RD (1999) Bacterial translocation from the gastrointestinal tract. Adv Exp Med Biol 473:11–30

    PubMed  CAS  Google Scholar 

  2. Hornef MW, Wick MJ, Rhen M, Normark S (2002) Bacterial strategies for overcoming host innate and adaptive immune responses. Nature Immunol 3:1033–1040

    Article  CAS  Google Scholar 

  3. Carden DL, Granger DN (2000) Pathophysiology of ischaemia-reperfusion injury. J Pathol 190:255–266

    Article  PubMed  CAS  Google Scholar 

  4. Carlos TM, Harlan JM (1994) Leukocyte endothelial adhesion molecules. Blood 84:2068–2101

    PubMed  CAS  Google Scholar 

  5. Panes J, Perry M, Granger DN (1999) Leukocyte endothelial cell adhesion: avenues for therapeutic intervention. Br J Pharmacol 126:527–550

    Article  Google Scholar 

  6. Cetincale O, Bilgic L, Bolayirli M, Sengul R, Ayan F, Burcak G (1997) Involvement of neutrophils in ischemic injury: biochemical and histopathological investigation of the effects of FK506 on dorsal skin flaps in rats. Ann Plast Surg 39:505–515

    Article  Google Scholar 

  7. Weiss SJ (1989) Tissue destruction by neutrophils. N Eng J Med 320:365–376

    Article  CAS  Google Scholar 

  8. Matés JM, Pérez-Gómez C, Núñez de Castro I (1999) Antioxidant enzymes and human diseases. Clin Biochem 32(8):595–603

    Article  PubMed  Google Scholar 

  9. Jovanovic SV, Steenken S, Tosic M, Marjanovic B, Simic MG (1994) Flavonoids as antioxidants. J Am Chem Soc 4846–4851

  10. Daels-Rakotoarison DA, Gressier B, Trotin F, Brunet C, Luyckx M, Dine T, Bailleul F, Cazin M, Cazin J-C (2002) Effects of Rosa canina fruit extract on neutrophil respiratory burst. Phytother Res 16:157–161

    Article  PubMed  CAS  Google Scholar 

  11. Kharazmi A, Winther K (1999) Rose hip inhibits chemotaxis and chemiluminescence of human peripheral blood neutrophils in vitro and reduces certain inflammatory parameters in vivo. Inflammopharmacology 7:377–386

    PubMed  CAS  Google Scholar 

  12. Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30:3875–3883

    Article  CAS  Google Scholar 

  13. Descamps AM (1989) Microbial degradation of tannins and related compounds. In: NG Lewis, MG Paice (eds) Plant cell wall polymer biogenesis and biodegradation. Washington DC, Am Chem Soc, pp 559–566

    Google Scholar 

  14. Osawa R, Kuroiso K, Goto S, Shimzu A (2000) Isolation of tannin-degrading lactobacilli from humans and fermented foods. Appl Environ Microbiol 66:3093–3097

    Article  PubMed  CAS  Google Scholar 

  15. Barthelmebs L, Divies C, Cavin J-F (2000) Knockout of the p-coumarate decarboxylase gene from Lactobacillus plantarum reveals the existence of two other inducible enzymatic activates involved in phenolic acid metabolism. Appl Environ Microbiol 66:3368–3375

    Article  PubMed  CAS  Google Scholar 

  16. Fernandes CF, Shahani KM, Amer MA (1987) Therapeutic role of dietary lactobacilli and lactobacilli fermented dairy products. FEMS Microbiol Rev 46:343–356

    Article  Google Scholar 

  17. Shahani KM, Ayebo AD (1980) Role of dietary lactobacilli in gastrointestinal microecology. Am J Clin Nutr 33:2448–2457

    PubMed  CAS  Google Scholar 

  18. Marteau P, Rambaud JC (1993) Potential of using lactic acid bacteria for therapy and immunomodulation in man. FEMS Microbiol Rev 12:207–220

    Article  PubMed  CAS  Google Scholar 

  19. Mayeux PR (1997) Pathobiology of lipopolysaccharide. J Toxicol Environ Health 51:415–435

    Article  PubMed  CAS  Google Scholar 

  20. Victor VM, De la Fuente M (2003) Several functions of immune cells in mice changed by oxidative stress caused by endotoxin. Physiol Res 52:789–796

    PubMed  CAS  Google Scholar 

  21. Molin G, Jeppsson B, Ahrné S, Johansson ML, Nobaeck S, Ståhl M, Bengmark S (1993) Numerical taxonomy of Lactobacillus spp. associated with healthy and diseased mucosa of the human intestines. J Appl Bacteriol 74:314–323

    PubMed  CAS  Google Scholar 

  22. Johansson ML, Molin G, Jeppsson B, Nobaek S, Ahrné S, Bengmark S (1993) Administration of different Lactobacillus strains in fermented oatmeal soap: in vivo colonization of human intestinal mucosa and effect on the indigenous flora. Appl Environ Microbiol 59:15–20

    PubMed  CAS  Google Scholar 

  23. Riaz AA, Thorlacius H (2003) Oxygen radical-dependent expression of CXC chemokines regulate ischemia/reperfusion-induced leukocyte adhesion in the mouse colon. Free Radic Biol Med 35(7):782–789

    Article  PubMed  CAS  Google Scholar 

  24. Van deer Weeij D, Berghuis JM, Lekkerkerk JEC (1972) Colonization resistance of the digestive tract of the mice during systemic antibiotic treatment. J Hyg 70(4):605–609

    Article  Google Scholar 

  25. Fabia R, Ar-Rajab A, Johansson ML, Andersson R, Willen R, Jeppsson B, Molin G, Bengmark S (1993) Impairment of bacterial flora in human ulcerative colitis and experimental colitis in rats. Digestion 54:248–255

    Article  PubMed  CAS  Google Scholar 

  26. Tannock GW, Savage DC (1974) Influences of dietary and environmental stress on microbial populations in the murine gastrointestinal tract. Infect Immun 9:591–598

    PubMed  CAS  Google Scholar 

  27. Fabia R, Ar-Rajab A, Johansson ML, Andersson R, Willen R, Jeppsson B, Molin G, Bengmark S (1993) The effect of exogenous administration of Lactobacillus reuteri R2LC and oat fiber on acetic acid induced colitis in the rat. Scand J Gastroenterol 28:155–162

    PubMed  CAS  Google Scholar 

  28. Gorbach SL, Chang TW, Goldin B (1987) Successful treatment of relapsing C. difficile colitis with Lactobacillus GG. Lancet 2(8574):1519

    Article  PubMed  CAS  Google Scholar 

  29. Nobaeck S, Johansson ML, Molin G, Ahrné S, Jeppsson B (2000) Alteration of intestinal microflora is associated with reduction in abdominal bloating and pain in patients with irritable bowel syndrome. Am J Gastroenterol 95:1231–1238

    Article  Google Scholar 

  30. Adawi D, Kasravi FB, Molin G, Jeppsson B (1997) Effect of Lactobacillus supplementation with and without arginine on liver damage and bacterial translocation in an acute liver injury model. Hepatology 25:642–647

    Article  PubMed  CAS  Google Scholar 

  31. Brown JF, Chafee KA, Tepperman BL (1998) Role of mast cells, neutrophils and nitric oxide in endotoxin-induced damage to the neonatal rat colon. Brit J Pharmacol 123:31–38

    Article  CAS  Google Scholar 

  32. Mao Y, Nobaek S, Kasravi B, Adawi D, Stenram U, Molin G, Jeppsson B (1996) The effects of Lactobacillus strains and oat fiber on methotrexate-induced enterocolitis in rats. Gastroenterology 111:334–344

    Article  PubMed  CAS  Google Scholar 

  33. Goodlad RA, Wright NA (1990) Changes in intestinal cell proliferation, absorptive capacity and structure in young, adult and old rats. J Anat 173:109–118

    PubMed  CAS  Google Scholar 

  34. Imaoka A, Setoyama H, Takagi A, Matsumoto S, Umesaki Y (2004) Improvement of human faecal flora-associated mouse model for evaluation of the functional foods. J Appl Microbiol 96:656–663

    Article  PubMed  CAS  Google Scholar 

  35. Savage DC, Dubos R, Schaedler RW (1968) The gastrointestinal epithelium and its autochthonous bacterial flora. J Exp Med 127(1):67–76

    Article  PubMed  CAS  Google Scholar 

  36. Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Dore J (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807

    PubMed  CAS  Google Scholar 

  37. Wilson KH, Blictchington RB (1999) Human colonic biota studied by ribosomal DNA sequence analysis. Appl Environ Microbiol 62:2273–2278

    Google Scholar 

Download references

Acknowledgements

Susanne Eiswohld and Diya Adawi are thanked for technical support; Jonas Björk, biostatistician, Competence Center for Clinical Research, Lund University Hospital for statistical analysis and Virgil Gadaleanu, Dept. of Pathology, Malmö University Hospital, for histological examination, are all gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Jeppsson.

Additional information

First two authors contributed equally.

Acknowledgement of support: Cancer Foundation, Dir. A. Påhlsson’s Foundation, Gunnar Nilsson’s Foundation, Malmö University Hospital, Apotekare Hedberg’s Foundation, Bengt Ihre’s Foundation, Ruth and Richard Juhlin’s Foundation, Einar and Inga Nilsson’s Foundation and Agnes Nilsson’s Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Håkansson, Å., Stene, C., Mihaescu, A. et al. Rose Hip and Lactobacillus plantarum DSM 9843 Reduce Ischemia/Reperfusion Injury in the Mouse Colon. Dig Dis Sci 51, 2094–2101 (2006). https://doi.org/10.1007/s10620-006-9170-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-006-9170-9

Keywords

Navigation