Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado G, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Kaiser L, Kudlur M, Levenberg J, Man D, Monga R, Moore S, Murray D, Shlens J, Steiner B, Sutskever I, Tucker P, Vanhoucke V, Vasudevan V, Vinyals O, Warden P, Wicke M, Yu Y, Zheng X (2015) TensorFlow: Large-scale machine learning on heterogeneous distributed systems. https://doi.org/10.1038/nn.3331
Abe N, Zadrozny B, Langford J (2006) Outlier detection by sampling with accuracy guarantees. In: ACM SIGKDD international conference on knowledge discovery and data mining (KDD). pp 767–772. https://doi.org/10.1145/1150402.1150501
Agyemang M, Barker K, Alhajj R (2006) A comprehensive survey of numeric and symbolic outlier mining techniques. Intell Data Anal 10(6):521–538. https://doi.org/10.3233/IDA-2006-10604
Article
Google Scholar
Akcay S, Atapour-Abarghouei A, Breckon T (2018) GANomaly: Semi-supervised anomaly detection via adversarial training. In: Asian conference on computer vision (ACCV). pp 622–637
Alain G, Bengio Y (2014) What regularized auto-encoders learn from the data generating distribution. J Mach Learn Res 15:3743–3773
MathSciNet
MATH
Google Scholar
An J, Cho S (2015) Variational autoencoder based anomaly detection using reconstruction probability. Tech. rep., SNU Data Mining Center
Angiulli F, Pizzuti C (2002) Fast outlier detection in high dimensional spaces. In: European conference on principles of data mining and knowledge discovery (PKDD). pp 15–27. https://doi.org/10.1007/3-540-45681-3_2
Antipov G, Baccouche M, Dugelay JL (2017) Face aging with conditional generative adversarial networks. In: IEEE international conference on image processing. pp 2089–2093. https://doi.org/10.1109/ICIP.2017.8296650
Ayhan B, Dao M, Kwan C, Chen HM, Bell JF, Kidd R (2017) A novel utilization of image registration techniques to process Mastcam images in Mars rover with applications to image fusion, pixel clustering, and anomaly detection. IEEE J Sel Top Appl Earth Observ Remote Sens 10(10):4553–4564. https://doi.org/10.1109/JSTARS.2017.2716923
Article
Google Scholar
Bay SD, Schwabacher M (2003) Mining distance-based outliers in near linear time with randomization and a simple pruning rule. In: ACM SIGKDD international conference on knowledge discovery and data mining (KDD). pp 29–38. https://doi.org/10.1145/956750.956758
Bell JF, Godber A, McNair S, Caplinger MA, Maki JN, Lemmon MT, Van Beek J, Malin MC, Wellington D, Kinch KM, Madsen MB, Hardgrove C, Ravine MA, Jensen E, Harker D, Anderson RB, Herkenhoff KE, Morris RV, Cisneros E, Deen RG (2017) The Mars Science Laboratory Curiosity rover Mastcam instruments: preflight and in-flight calibration, validation, and data archiving. Earth Space Sci 4(7):396–452. https://doi.org/10.1002/2016EA000219
Article
Google Scholar
Bell III J, Calvin W, Farrand W, Greeley R, Johnson J, Joliff B, Morris R, Sullivan R, Thompson S, Wang A, Weitz C, Squyres S (2008) Mars Exploration Rover Pancam multispectral imaging of rocks, soils, and dust in Gusev Crater and Meridiani Planum. In: Bell III J (ed) The martian surface: composition, mineralogy, and physical properties, chap 13. pp 281–314
Bell III JF, Maki JN, Mehall GL, Ravine MA, Caplinger MA (2016) Mastcam-Z: Designing a geologic, stereoscopic, and multispectral pair of zoom cameras for the NASA Mars 2020 rover. In: 3rd International workshop on instrumentation for planetary missions, vol 1980
Bhattacharjee S, Mandal D, Biswas S (2019) Autoencoder based novelty detection for generalized zero shot learning. In: 2019 IEEE international conference on image processing (ICIP). pp 3646–3650. https://doi.org/10.1109/ICIP.2019.8803562
Blake D, Vaniman D, Achilles C, Anderson R, Bish D, Bristow T, Chen C, Chipera S, Crisp J, Des Marais D, Downs RT, Farmer J, Feldman S, Fonda M, Gailhanou M, Ma H, Ming DW, Morris RV, Sarrazin P, Stolper E, Treiman A, Yen A (2012) Characterization and calibration of the CheMin mineralogical instrument on Mars Science Laboratory. Space Sci Rev 170(1–4):341–399. https://doi.org/10.1007/s11214-012-9905-1
Article
Google Scholar
Breunig MM, Kriegel HP, Ng RT, Sander J (2000) LOF: Identifying density-based local outliers. In: ACM SIGMOD international conference on management of data. pp 93–104. https://doi.org/10.1145/342009.335388
Budalakoti S, Srivastava AN, Akella R, Turkov E (2006) Anomaly detection in large sets of high-dimensional symbol sequences. Tech. Rep. TM-2006-214553, NASA Ames Research Center
Campbell C, Bennett KP (2001) A linear programming approach to novelty detection. In: Advances in neural information processing systems (NIPS). pp 395–401
Campos GO, Zimek A, Sander J, Campello RJGB, Micenková B, Schubert E, Assent I, Houle ME (2016) On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study. Data Min Knowl Discov 30(4):891–927. https://doi.org/10.1007/s10618-015-0444-8
MathSciNet
Article
Google Scholar
Carrera D, Boracchi G, Foi A, Wohlberg B (2015) Detecting anomalous structures by convolutional sparse models. In: International joint conference on neural networks (IJCNN). pp 1–8. https://doi.org/10.1109/IJCNN.2015.7280790
Chandola V, Banerjee A, Kumar V (2009) Anomaly detection. ACM Comput Surv 41(3):1–58. https://doi.org/10.1145/1541880.1541882
Article
Google Scholar
Chang CI, Chiang SS (2002) Anomaly detection and classification for hyperspectral imagery. IEEE Trans Geosci Remote Sens 40(6):1314–1325. https://doi.org/10.1109/TGRS.2002.800280
Article
Google Scholar
Chiu AL, Fu AWc (2003) Enhancements on local outlier detection. In: International database engineering and applications symposium. pp 298–307. https://doi.org/10.1109/IDEAS.2003.1214939
Clifton DA, Bannister PR, Tarassenko L (2007) A framework for novelty detection in jet engine vibration data. Key Eng Mater 347:305–310. https://doi.org/10.4028/www.scientific.net/KEM.347.305
Article
Google Scholar
Creswell A, Arulkumaran K, Bharath AA (2017) On denoising autoencoders trained to minimise binary cross-entropy. arXiv preprint arXiv:1708.08487
Desforges MJ, Jacob PJ, Cooper JE (1998) Applications of probability density estimation to the detection of abnormal conditions in engineering. J Mech Eng Sci 212(8):687–703. https://doi.org/10.1243/0954406981521448
Article
Google Scholar
Diaz I, Hollmen J (2002) Residual generation and visualization for understanding novel process conditions. In: International joint conference on neural networks. IJCNN’02 (Cat. No.02CH37290). pp 2070–2075. https://doi.org/10.1109/IJCNN.2002.1007460
Donahue J, Krahenbuhl P, Darrell T (2017) Adversarial feature learning. In: International conference on learning representations (ICLR). pp 1–18
Dong HW, Hsiao WY, Yang LC, Yang YH (2018) MuseGAN: Multi-track sequential generative adversarial networks for symbolic music generation and accompaniment. In: AAAI conference on artificial intelligence. pp 34–41
Erfani SM, Rajasegarar S, Karunasekera S, Leckie C (2016) High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recogn 58:121–134. https://doi.org/10.1016/J.PATCOG.2016.03.028
Article
Google Scholar
Ertöz L, Steinbach M, Kumar V (2003) Finding topics in collections of documents: a shared nearest neighbor approach. Clust Inf Retr 11:83–103. https://doi.org/10.1007/978-1-4613-0227-8_3
MathSciNet
Article
Google Scholar
Filippone M, Masulli F, Rovetta S (2010) Applying the possibilistic c-means algorithm in kernel-induced spaces. IEEE Trans Fuzzy Syst 18(3):572–584. https://doi.org/10.1109/TFUZZ.2010.2043440
Article
Google Scholar
Francis R, Estlin T, Doran G, Johnstone S, Gaines D, Verma V, Burl M, Frydenvang J, Montaño S, Wiens R et al (2017) Aegis autonomous targeting for chemcam on mars science laboratory: deployment and results of initial science team use. Sci Robot 2(7):eaan4582. https://doi.org/10.1126/scirobotics.aan4582
Article
Google Scholar
Gaffey MJ (1976) Spectral reflectance characteristics of the meteorite classes. J Geophys Res 81(5):905–920. https://doi.org/10.1029/JB081i005p00905
Article
Google Scholar
Ghoting A, Parthasarathy S, Otey ME (2008) Fast mining of distance-based outliers in high-dimensional datasets. Data Min Knowl Discov 16(3):349–364. https://doi.org/10.1007/s10618-008-0093-2
MathSciNet
Article
Google Scholar
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems (NIPS). pp 2672–2680
Grotzinger JP, Crisp J, Vasavada AR, Anderson RC, Baker CJ, Barry R, Blake DF, Conrad P, Edgett KS, Ferdowski B, Gellert R, Gilbert JB, Golombek M, Gómez-Elvira J, Hassler DM, Jandura L, Litvak M, Mahaffy P, Maki J, Meyer M, Malin MC, Mitrofanov I, Simmonds JJ, Vaniman D, Welch RV, Wiens RC (2012) Mars Science Laboratory mission and science investigation. Space Sci Rev 170(1–4):5–56. https://doi.org/10.1007/s11214-012-9892-2
Article
Google Scholar
He Z, Xu X, Deng S (2003) Discovering cluster-based local outliers. Pattern Recogn Lett 24(9–10):1641–1650. https://doi.org/10.1016/S0167-8655(03)00003-5
Article
MATH
Google Scholar
Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507. https://doi.org/10.1126/science.1127647
MathSciNet
Article
MATH
Google Scholar
Hjelm RD, Fedorov A, Lavoie-Marchildon S, Grewal K, Bachman P, Trischler A, Bengio Y (2019) Learning deep representations by mutual information estimation and maximization. In: International conference for learning representations (ICLR)
Hodge VJ, Austin J (2004) A survey of outlier detection methodologies. Artif Intell Rev 22(2):85–126. https://doi.org/10.1007/s10462-004-4304-y
Article
MATH
Google Scholar
Jablonski JA, Bihl TJ, Bauer KW (2015) Principal component reconstruction error for hyperspectral anomaly detection. IEEE Geosci Remote Sens Lett 12(8):1725–1729. https://doi.org/10.1109/LGRS.2015.2421813
Article
Google Scholar
Japkowicz N, Myers C, Gluck M (1995) A novelty detection approach to classification. In: International joint conference on artificial intelligence (IJCAI), vol 1. pp 518–523
Johnson JR, Bell JFI, Gasnault O, Le Mouelic S, Rapin W, Bridges J, Wellington DF (2014) First iron meteorites observed by the Mars Science Laboratory (MSL) rover Curiosity. In: American geophysical union (AGU) fall meeting
Johnson JR, Bell J III, Bender S, Blaney D, Cloutis E, DeFlores L, Ehlmann B, Gasnault O, Gondet B, Kinch K, Lemmon M, Le Mouélic S, Maurice S, Rice M, Wiens R (2015) ChemCam passive reflectance spectroscopy of surface materials at the Curiosity landing site, Mars. Icarus 249:74–92. https://doi.org/10.1016/J.ICARUS.2014.02.028
Article
Google Scholar
Kerner HR, Wellington DF, Wagstaff KL, Bell JF, Ben Amor H (2019) Novelty detection for multispectral images with application to planetary exploration. In: AAAI conference on artificial intelligence. pp 9484–9491. https://doi.org/10.1609/aaai.v33i01.33019484
Kim D, Kang P, Cho S, Hj Lee, Doh S (2012) Machine learning-based novelty detection for faulty wafer detection in semiconductor manufacturing. Expert Syst Appl 39(4):4075–4083. https://doi.org/10.1016/J.ESWA.2011.09.088
Article
Google Scholar
Krzanowski WJ, Hand DJ (2009) ROC curves for continuous data. CRC Press, Boca Raton
Book
Google Scholar
Kwak N (2008) Principal component analysis based on l1-norm maximization. IEEE Trans Pattern Anal Mach Intell 9:1672–1680. https://doi.org/10.1109/TPAMI.2008.114
Article
Google Scholar
Kwon H, Nasrabadi NM (2005) Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery. IEEE Trans Geosci Remote Sens 43(2):388–397. https://doi.org/10.1109/TGRS.2004.841487
Article
Google Scholar
Latecki LJ, Lazarevic A, Pokrajac D (2007) Outlier detection with kernel density functions. Mach Learn Data Min Pattern Recogn. https://doi.org/10.1007/978-3-540-73499-4_6
Article
Google Scholar
Laxhammar R, Falkman G, Sviestins E (2009) Anomaly detection in sea traffic—a comparison of the Gaussian Mixture Model and the Kernel Density Estimator. In: International conference on information fusion
LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/nature14539
Article
Google Scholar
Lee K, Lee K, Lee H, Shin J (2018) A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In: Advances in neural information processing systems. pp 7167–7177
Léveillé RJ, Bridges J, Wiens RC, Mangold N, Cousin A, Lanza N, Forni O, Ollila A, Grotzinger J, Clegg S, Siebach K, Berger G, Clark B, Fabre C, Anderson R, Gasnault O, Blaney D, Deflores L, Leshin L, Maurice S, Newsom H (2014) Chemistry of fracture-filling raised ridges in Yellowknife Bay, Gale Crater: window into past aqueous activity and habitability on Mars. J Geophys Res Planets 119(11):2398–2415. https://doi.org/10.1002/2014JE004620
Article
Google Scholar
Liu FT, Ting KM, Zhou ZH (2008) Isolation forest. In: IEEE international conference on data mining (ICDM). pp 413–422. https://doi.org/10.1109/ICDM.2008.17
Ma J, Perkins S (2003) Time-series novelty detection using one-class support vector machines. In: International joint conference on neural networks, vol 3. pp 1741–1745. https://doi.org/10.1109/IJCNN.2003.1223670
Mahaffy P, Webster CR, Atreya SK, Franz H, Wong M, Conrad PG, Harpold D, Jones JJ, Leshin LA, Manning H, Owen T, Pepin RO, Squyres S, Trainer M, Science Team T MSL (2013) Abundance and isotopic composition of gases in the Martian atmosphere from the Curiosity rover. Science 341(6143):263–266. https://doi.org/10.1126/science.194.4271.1298
Article
Google Scholar
Malin MC, Ravine MA, Caplinger MA, Tony Ghaemi F, Schaffner JA, Maki JN, Bell JF, Cameron JF, Dietrich WE, Edgett KS, Edwards LJ, Garvin JB, Hallet B, Herkenhoff KE, Heydari E, Kah LC, Lemmon MT, Minitti ME, Olson TS, Parker TJ, Rowland SK, Schieber J, Sletten R, Sullivan RJ, Sumner DY, Yingst AR, Duston BM, McNair S, Jensen EH (2017) The Mars Science Laboratory (MSL) Mast cameras and Descent imager: investigation and instrument descriptions. Earth Space Sci 4(8):506–539. https://doi.org/10.1002/2016EA000252
Article
Google Scholar
Manevitz L, Yousef M (2007) One-class document classification via neural networks. Neurocomputing 70(7–9):1466–1481. https://doi.org/10.1016/J.NEUCOM.2006.05.013
Article
Google Scholar
Manevitz LM, Yousef M (2001) One-class SVMs for document classification. J Mach Learn Res 2:139–154
MATH
Google Scholar
Markou M, Singh S (2003a) Novelty detection: a review—part 1: statistical approaches. Sig Process 83(12):2481–2497. https://doi.org/10.1016/J.SIGPRO.2003.07.018
Article
MATH
Google Scholar
Markou M, Singh S (2003b) Novelty detection: a review—part 2: neural network based approaches. Sig Process 83(12):2499–2521. https://doi.org/10.1016/J.SIGPRO.2003.07.019
Article
MATH
Google Scholar
Marsland S (2003) Novelty detection in learning systems. Neural Comput Surv 3(2):157–195
Google Scholar
Masci J, Meier U, Cireşan D, Schmidhuber J (2011) Stacked convolutional auto-encoders for hierarchical feature extraction. In: International conference on artificial neural networks (ICANN): artificial networks and machine learning. pp 52–59. https://doi.org/10.1007/978-3-642-21735-7_7
Modenesi AP, Braga AP (2009) Analysis of time series novelty detection strategies for synthetic and real data. Neural Process Lett 30(1):1–17. https://doi.org/10.1007/s11063-009-9106-4
Article
Google Scholar
Molero JM, Garzon EM, Garcia I, Plaza A (2013) Analysis and optimizations of global and local versions of the RX algorithm for anomaly detection in hyperspectral data. IEEE J Sel Top Appl Earth Observ Remote Sens 6(2):801–814. https://doi.org/10.1109/JSTARS.2013.2238609
Article
Google Scholar
Munoz-Mari J, Bovolo F, Gomez-Chova L, Bruzzone L, Camp-Valls G (2010) Semisupervised one-class support vector machines for classification of remote sensing data. IEEE Trans Geosci Remote Sens 48(8):3188–3197. https://doi.org/10.1109/TGRS.2010.2045764
Article
Google Scholar
Papadimitriou S, Kitagawa H, Gibbons P, Faloutsos C (2003) LOCI: fast outlier detection using the local correlation integral. In: International conference on data engineering. pp 315–326. https://doi.org/10.1109/ICDE.2003.1260802
Park D, Hoshi Y, Kemp CC (2018) A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder. IEEE Robot Autom Lett 3(3):1544–1551. https://doi.org/10.1109/LRA.2018.2801475
Article
Google Scholar
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830
MathSciNet
MATH
Google Scholar
Pimentel MA, Clifton DA, Clifton L, Tarassenko L (2014) A review of novelty detection. Sig Process 99:215–249. https://doi.org/10.1016/J.SIGPRO.2013.12.026
Article
Google Scholar
Pires A, Santos-Pereira C (2005) Using clustering and robust estimators to detect outliers in multivariate data. In: International conference on robust statistics. https://doi.org/10.1007/978-3-642-57489-4_41
Reed I, Yu X (1990) Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Trans Acoust Speech Signal Process 38(10):1760–1770. https://doi.org/10.1109/29.60107
Article
Google Scholar
Ren D, Wang B, Perrizo W (2004) RDF: A density-based outlier detection method using vertical data representation. In: IEEE international conference on data mining (ICDM). pp 503–506. https://doi.org/10.1109/ICDM.2004.10010
Rice MS, Bell III JF, Godber A, Wellington DF, Fraeman AA, Johnson JR, Kinch KM, Malin MC, Grotzinger JP, the MSL Science Team (2013) Mastcam multispectral imaging results from the Mars Science Laboratory investigation in Yellowknife Bay. In: European planetary science congress (EPSC), vol 8
Richter C, Roy N (2017) Safe visual navigation via deep learning and novelty detection. In: Robotics: science and systems (RSS). https://doi.org/10.15607/RSS.2017.XIII.064
Ristic B, La Scala B, Morelande M, Gordon N (2008) Statistical analysis of motion patterns in AIS data: anomaly detection and motion prediction. In: International conference on information fusion. pp 1–7. https://doi.org/10.1109/ICIF.2008.4632190
Rosset S (2004) Model selection via the AUC. In: International conference on machine learning (ICML). https://doi.org/10.1145/1015330.1015400
Schlegl T, Seebock P, Waldstein SM, Schmidt-Erfurth U, Langs G (2017) Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: International conference on information processing in medical imaging (IPMI). pp 146–157. https://doi.org/10.1007/978-3-319-59050-9_12
Scholkopf B, Williamson R, Smola A, Shawe-Taylor J, Platt J, Holloway R (2000) Support vector method for novelty detection. In: Advances in neural information processing systems (NIPS). pp 582–588
Schubert E, Zimek A, Kriegel HP (2014) Generalized outlier detection with flexible kernel density estimates. In: SIAM international conference on data mining (SDM). pp 542–550. https://doi.org/10.1137/1.9781611973440.63
Silverman BW (1986) Density estimation for statistics and data analysis. Monogr Stat Appl Probab. https://doi.org/10.1002/bimj.4710300745
Article
MATH
Google Scholar
Srivastava A, Zane-Ulman B (2005) Discovering recurring anomalies in text reports regarding complex space systems. In: IEEE aerospace conference. pp 3853–3862. https://doi.org/10.1109/AERO.2005.1559692
Srivastava AN (2006) Enabling the discovery of recurring anomalies in aerospace problem reports using high-dimensional clustering techniques. In: IEEE aerospace conference. https://doi.org/10.1109/AERO.2006.1656136
Syed Z, Saeed M, Rubinfeld I (2010) Identifying high-risk patients without labeled training data: anomaly detection methodologies to predict adverse outcomes. In: AMIA annual symposium. pp 772–776
Tang J, Chen Z, Fu AWc, Cheung DW (2002) Enhancing effectiveness of outlier detections for low density patterns. In: Pacific-Asia conference on knowledge discovery and data mining (PAKDD). pp 535–548. https://doi.org/10.1007/3-540-47887-6_53
Tang J, Chen Z, Fu AW, Cheung DW (2007) Capabilities of outlier detection schemes in large datasets, framework and methodologies. Knowl Inf Syst 11(1):45–84. https://doi.org/10.1007/s10115-005-0233-6
Article
Google Scholar
Tax DM, Duin RP (1999) Support vector domain description. Pattern Recogn Lett 20(11–13):1191–1199. https://doi.org/10.1016/S0167-8655(99)00087-2
Article
Google Scholar
Thompson B, Marks R, Choi J, El-Sharkawi M, Huang MY, Bunje C (2002) Implicit learning in autoencoder novelty assessment. In: International joint conference on neural networks, vol 3. pp 2878–2883. https://doi.org/10.1109/IJCNN.2002.1007605
Tipping ME, Bishop C (1999) Probabilistic principal component analysis. J R Stat Soc Ser B (Stat Methodol) 61(3):611–622. https://doi.org/10.1111/1467-9868.00196
MathSciNet
Article
MATH
Google Scholar
Toivola J, Prada MA, Hollmén J (2010) Novelty detection in projected spaces for structural health monitoring. In: International symposium on intelligent data analysis (IDA). pp 208–219. https://doi.org/10.1007/978-3-642-13062-5_20
Wagstaff KL, Lanza NL, Thompson DR, Dietterich TG, Gilmore MS (2013) Guiding scientific discovery with explanations using DEMUD. In: AAAI conference on artificial intelligence. pp 905–911
Wagstaff KL, Doran G, Davies A, Anwar S, Chakraborty S, Cameron M, Daubar IJ, Phillips C (2019) Enabling onboard detection of events of scientific interest for the Europa Clipper spacecraft. In: ACM SIGKDD international conference on knowledge discovery and data mining (KDD). pp 2191–2201. https://doi.org/10.1145/3292500.3330656
Wang CH (2009) Outlier identification and market segmentation using kernel-based clustering techniques. Expert Syst Appl 36(2):3744–3750. https://doi.org/10.1016/J.ESWA.2008.02.037
Article
Google Scholar
Wang Y, Wong J, Miner A (2004a) Anomaly intrusion detection using one class SVM. In: IEEE SMC information assurance workshop. pp 358–364. https://doi.org/10.1109/IAW.2004.1437839
Wang Z, Bovik A (2009) Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE Signal Process Mag 26(1):98–117. https://doi.org/10.1109/MSP.2008.930649
Article
Google Scholar
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004b) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612. https://doi.org/10.1109/TIP.2003.819861
Article
Google Scholar
Wellington DF (2018) Mars in the visible to near infrared: two views of the red planet. Ph.D. thesis, Arizona State University
Wellington DF, Bell JF III, Johnson JR, Kinch KM, Rice MS, Godber A, Ehlmann BL, Fraeman AA, Hardgrove C (2017a) Visible to near-infrared MSL/Mastcam multispectral imaging: Initial results from select high-interest science targets within Gale Crater, Mars. Am Mineral 102(6):1202–1217. https://doi.org/10.2138/am-2017-5760CCBY
Article
Google Scholar
Wellington DF, Bell III JF, Johnson JR, Rice MS, Fraeman AA, Horgan B (2017b) VIS/NIR spectral differences of materials within Gale Crater, Mars: parameterization of MSL/Mastcam multispectral observations. In: 48th Lunar and planetary science conference (LPSC)
Williams G, Baxter R, He H, Hawkins S, Lifang Gu (2002) A comparative study of RNN for outlier detection in data mining. In: IEEE international conference on data mining (ICDM). pp 709–712. https://doi.org/10.1109/ICDM.2002.1184035
Wilson M, Trosper J, Abilleira F (2017) NASA Mars 2020 Landed Mission Development. Tech. rep., Jet Propulsion Laboratory, California Institute of Technology
Xiao Y, Wang H, Xu W, Zhou J (2013) L1 norm based KPCA for novelty detection. Pattern Recogn 46(1):389–396. https://doi.org/10.1016/J.PATCOG.2012.06.017
Article
MATH
Google Scholar
Xiong Y, Zuo R (2016) Recognition of geochemical anomalies using a deep autoencoder network. Comput Geosci 86:75–82. https://doi.org/10.1016/J.CAGEO.2015.10.006
Article
Google Scholar
Yu D, Sheikholeslami G, Zhang A (2002) FindOut: Finding outliers in very large datasets. Knowl Inf Syst 4(4):387–412. https://doi.org/10.1007/s101150200013
Article
Google Scholar
Yu JX, Qian W, Lu H, Zhou A (2006) Finding centric local outliers in categorical/numerical spaces. Knowl Inf Syst 9(3):309–338. https://doi.org/10.1007/s10115-005-0197-6
Article
Google Scholar
Zenati H, Foo CS, Lecouat B, Manek G, Ramaseshan Chandrasekhar V (2018a) Efficient GAN-based anomaly detection. In: International conference on learning representations (ICLR)
Zenati H, Romain M, Foo CS, Lecouat B, Chandrasekhar VR (2018b) Adversarially learned anomaly detection. In: IEEE international conference on data mining (ICDM). pp 727–736. https://doi.org/10.1109/ICDM.2018.00088
Zhang J, Wang H (2006) Detecting outlying subspaces for high-dimensional data: the new task, algorithms, and performance. Knowl Inf Syst 10(3):333–355. https://doi.org/10.1007/s10115-006-0020-z
MathSciNet
Article
Google Scholar
Zhou C, Paaenroth RC (2017) Anomaly detection with robust deep autoencoders. In: ACM SIGKDD international conference on knowledge discovery and data mining (KDD). https://doi.org/10.1145/3097983.3098052
Zhou J, Kwan C, Ayhan B, Eismann MT (2016) A novel cluster Kernel RX algorithm for anomaly and change detection using hyperspectral images. IEEE Trans Geosci Remote Sens 54(11):6497–6504. https://doi.org/10.1109/TGRS.2016.2585495
Article
Google Scholar