Skip to main content
Log in

HHMF: hidden hierarchical matrix factorization for recommender systems

  • Published:
Data Mining and Knowledge Discovery Aims and scope Submit manuscript

Abstract

Matrix factorization (MF) is one of the most powerful techniques used in recommender systems. MF models the (user, item) interactions behind historical explicit or implicit ratings. Standard MF does not capture the hierarchical structural correlations, such as publisher and advertiser in advertisement recommender systems, or the taxonomy (e.g., tracks, albums, artists, genres) in music recommender systems. There are a few hierarchical MF approaches, but they require the hierarchical structures to be known beforehand. In this paper, we propose a Hidden Hierarchical Matrix Factorization (HHMF) technique, which learns the hidden hierarchical structure from the user-item rating records. HHMF does not require the prior knowledge of hierarchical structure; hence, as opposed to existing hierarchical MF methods, HHMF can be applied when this information is either explicit or implicit. According to our extensive experiments, HHMF outperforms existing methods, demonstrating that the discovery of latent hierarchical structures indeed improves the quality of recommendation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. http://www.amazon.com.

  2. http://www.netflix.com.

  3. http://www.yelp.com.

  4. http://www.tripadvisor.com.

  5. http://www.goodreads.com.

  6. http://www.netflixprize.com.

  7. Users in a trust network can indicate whether he/she thinks one review with a rating is ‘useful’. One trust statement forms an edge with the trust rating as edge weight between two users. Epinions (http://www.epinions.com) is an exemplified recommender systems based on trust network.

  8. \(Q^{(l+1)}=P^{(l+1)}=0\).

  9. http://www.librec.net/datasets.html.

  10. http://www.kaggle.com/c/yelp-recsys-2013.

  11. http://lihui.info/data/dianping.html.

  12. https://grouplens.org/datasets/movielens.

  13. https://www.netflixprize.com.

  14. https://github.com/yushuai/FISM.

  15. http://www.public.asu.edu/~swang187/codes/HSR.zip.

  16. https://github.com/RuidongZ/Deep_Matrix_Factorization_Models.

  17. https://github.com/hexiangnan/neural_collaborative_filtering.

  18. https://github.com/hexiangnan/neural_factorization_machine.

  19. https://software.intel.com/en-us/mkl.

  20. https://www.geforce.com/hardware/technology/cuda.

References

  • Airoldi EM, Blei DM, Fienberg SE, Xing EP (2008) Mixed membership stochastic blockmodels. J Mach Learn Res 9:1981–2014

    MATH  Google Scholar 

  • Bell RM, Koren Y (2007) Lessons from the netflix prize challenge. SIGKDD Explor 9(2):75–79

    Article  Google Scholar 

  • Bertsekas DP (2006) Nonlinear programming. Athena Scientific, Belmont

    Google Scholar 

  • Beutel A, Murray K, Faloutsos C, Smola AJ (2014) Cobafi: collaborative Bayesian filtering. In: Proceedings of the 23rd international world wide web conference, WWW ’14, Seoul, Republic of Korea, April 7–11, pp 97–108

  • Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1022

    MATH  Google Scholar 

  • Chen C, Zheng X, Wang Y, Hong F, Lin Z (2014) Context-aware collaborative topic regression with social matrix factorization for recommender systems. In: Proceedings of the 28th AAAI conference on artificial intelligence, AAAI ’14, Québec City, Québec, Canada, July 27–31, pp 9–15

  • Dhillon IS (2001) Co-clustering documents and words using bipartite spectral graph partitioning. In: Proceedings of the 7th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’12, San Francisco, CA, USA, August 26–29, pp 269–274

  • Ding D, Li H, Huang Z, Mamoulis N (2017) Efficient fault-tolerant group recommendation using alpha-beta-core. In: Proceedings of the 26th ACM international conference on information and knowledge management, CIKM ’17, Singapore, November 6–10, pp 2047–2050

  • Dror G, Koenigstein N, Koren Y, Weimer M (2012) The yahoo! music dataset and kdd-cup ’11. In: Proceedings of KDD Cup 2011 competition, San Diego, CA, USA, vol 18, pp 8–18

  • Facebook (2015) Recommending items to more than a billion people. http://code.facebook.com/posts/861999383875667. Accessed 2 June 2015

  • Fan W, Wang H, Yu PS, Ma S (2003) Is random model better? On its accuracy and efficiency. In: Proceedings of the 3rd IEEE international conference on data mining, ICDM ’03, Melbourne, Florida, USA, December 19–22, pp 51–58

  • García-Durán A, Gonzalez R, Oñoro-Rubio D, Niepert M, Li H (2018) Transrev: modeling reviews as translations from users to items. CoRR arXiv:1801.10095

  • George T, Merugu S (2005) A scalable collaborative filtering framework based on co-clustering. In: Proceedings of the 5th IEEE international conference on data mining, ICDM ’05, Houston, Texas, USA, November 27–30, pp 625–628

  • Guo G, Zhang J, Yorke-Smith N (2013) A novel Bayesian similarity measure for recommender systems. In: Proceedings of the 23rd international joint conference on artificial intelligence, IJCAI ’13, Beijing, China, August 3–9, pp 2619–2625

  • Guo G, Zhang J, Thalmann D, Yorke-Smith N (2014) ETAF: an extended trust antecedents framework for trust prediction. In: Proceedings of the 2014 IEEE/ACM international conference on advances in social networks analysis and mining, ASONAM ’14, Beijing, China, August 17–20, pp 540–547

  • Harper FM, Konstan JA (2016) The movie lens datasets: history and context. ACM Trans Interact Intell Syst 5(4):19:1–19:19

    Article  Google Scholar 

  • He R, McAuley J (2016) Ups and downs: modeling the visual evolution of fashion trends with one-class collaborative filtering. In: Proceedings of the 25th international world wide web conference, WWW ’16, Montreal, Canada, April 11–15, pp 507–517

  • He R, Lin C, Wang J, McAuley J (2016) Sherlock: sparse hierarchical embeddings for visually-aware one-class collaborative filtering. In: Proceedings of the 25th international joint conference on artificial intelligence, IJCAI ’16, New York, NY, USA, July 9–15, pp 3740–3746

  • He X, Chua T (2017) Neural factorization machines for sparse predictive analytics. In: Proceedings of the 40th international ACM SIGIR conference on research and development in information retrieval, SIGIR ’17, Shinjuku, Tokyo, Japan, August 7–11, pp 355–364

  • He X, Liao L, Zhang H, Nie L, Hu X, Chua T (2017) Neural collaborative filtering. In: Proceedings of the 26th international world wide web conference, WWW ’17, Perth, Australia, April 3–7, pp 173–182

  • Herlocker JL, Konstan JA, Terveen LG, Riedl J (2004) Evaluating collaborative filtering recommender systems. ACM Trans Inf Syst 22(1):5–53

    Article  Google Scholar 

  • Hu Y, Koren Y, Volinsky C (2008) Collaborative filtering for implicit feedback datasets. In: Proceedings of the 8th IEEE international conference on data mining, ICDM ’08, Pisa, Italy, December 15–19, pp 263–272

  • Jamali M, Huang T, Ester M (2011) A generalized stochastic block model for recommendation in social rating networks. In: Proceedings of the 5th ACM conference on recommender systems, RecSys ’11, Chicago, IL, USA, October 23–27, pp 53–60

  • Kabbur S, Ning X, Karypis G (2013) FISM: factored item similarity models for top-n recommender systems. In: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’13, Chicago, IL, USA, August 11–14, pp 659–667

  • Koenigstein N, Dror G, Koren Y (2011) Yahoo! music recommendations: modeling music ratings with temporal dynamics and item taxonomy. In: Proceedings of the 5th ACM conference on recommender systems, RecSys ’11, Chicago, IL, USA, October 23–27, pp 165–172

  • Koren Y (2008) Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’08, Las Vegas, Nevada, USA, August 24–27, pp 426–434

  • Koren Y, Bell RM, Volinsky C (2009) Matrix factorization techniques for recommender systems. IEEE Comput 42(8):30–37

    Article  Google Scholar 

  • Li H (2015) Social network based recommender systems. HKU Theses Online (HKUTO)

  • Li H (2018) Scalable and feasible learning and retrieval from matrix data. HKU Theses Online (HKUTO)

  • Li H, Cai F, Liao Z (2012) Content-based filtering recommendation algorithm using hmm. In: Proceedings of the 4th international conference on computational and information sciences, ICCIS ’12, Chongqing, China, August 17–19, pp 275–277

  • Li H, Wu D, Mamoulis N (2014) A revisit to social network-based recommender systems. In: Proceedings of the 37th international ACM SIGIR conference on research and development in information retrieval, SIGIR ’14, Gold Coast, QLD, Australia, July 6–11, pp 1239–1242

  • Li H, Wu D, Tang W, Mamoulis N (2015) Overlapping community regularization for rating prediction in social recommender systems. In: Proceedings of the 9th ACM conference on recommender systems, RecSys ’15, Vienna, Austria, September 16–20, pp 27–34

  • Li H, Chan TN, Yiu ML, Mamoulis N (2017) FEXIPRO: fast and exact inner product retrieval in recommender systems. In: Proceedings of the 2017 ACM international conference on management of data, SIGMOD ’17, Chicago, IL, USA, May 14–19, pp 835–850

  • Li H, Liu Y, Mamoulis N, Rosenblum DS (2019) Translation-based sequential recommendation for complex users on sparse data. IEEE Trans Knowl Data Eng. https://doi.org/10.1109/TKDE.2019.2906180

    Article  Google Scholar 

  • Lian D, Zhao C, Xie X, Sun G, Chen E, Rui Y (2014) GeoMF: joint geographical modeling and matrix factorization for point-of-interest recommendation. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’14, New York, NY, USA, August 24–27, pp 831–840

  • Liu X, Aberer K (2013) SoCo: a social network aided context-aware recommender system. In: Proceedings of the 22nd international world wide web conference, WWW ’13, Rio de Janeiro, Brazil, May 13–17, pp 781– 802

  • Lu Z, Li H, Mamoulis N, Cheung DW (2017) HBGG: a hierarchical Bayesian geographical model for group recommendation. In: Proceedings of the 17th SIAM international conference on data mining, SDM ’17, Houston, Texas, USA, April 27–29, pp 372–380

  • Ma H, Yang H, Lyu MR, King I (2008) SoRec: social recommendation using probabilistic matrix factorization. In: Proceedings of the 17th ACM international conference on information and knowledge management, CIKM ’08, Napa Valley, California, USA, October 26–30, pp 931–940

  • Ma H, Zhou D, Liu C, Lyu MR, King I (2011) Recommender systems with social regularization. In: Proceedings of the 4th international conference on web search and web data mining, WSDM ’11, Hong Kong, China, February 9–12, pp 287–296

  • Maleszka M, Mianowska B, Nguyen NT (2013) A method for collaborative recommendation using knowledge integration tools and hierarchical structure of user profiles. Knowl Based Syst 47:1–13

    Article  Google Scholar 

  • Mashhoori A, Hashemi S (2012) Incorporating hierarchical information into the matrix factorization model for collaborative filtering. In: Proceedings of the 4th Asian conference on intelligent information and database systems—part III, ACIIDS ’12, Kaohsiung, Taiwan, March 19–21, vol 7198, pp 504–513

  • Menon AK, Chitrapura KP, Garg S, Agarwal D, Kota N (2011) Response prediction using collaborative filtering with hierarchies and side-information. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’11, San Diego, CA, USA, August 21–24, pp 141–149

  • Ng AY, Jordan MI, Weiss Y (2001) On spectral clustering: analysis and an algorithm. In: Proceedings of the 14th international conference on neural information processing systems, NIPS ’01, Vancouver, British Columbia, Canada, December 3–8, pp 849–856

  • Nikolakopoulos AN, Kouneli MA, Garofalakis JD (2015) Hierarchical itemspace rank: exploiting hierarchy to alleviate sparsity in ranking-based recommendation. Neurocomputing 163:126–136

    Article  Google Scholar 

  • Nocedal J (1980) Updating quasi-Newton matrices with limited storage. Math Comput 35(151):773–782

    Article  MathSciNet  Google Scholar 

  • Oentaryo RJ, Lim E, Low J, Lo D, Finegold M (2014) Predicting response in mobile advertising with hierarchical importance-aware factorization machine. In: Proceedings of the 7th ACM international conference on web search and data mining, WSDM ’14, New York, NY, USA, February 24–28, pp 123–132

  • Paterek A (2007) Improving regularized singular value decomposition for collaborative filtering. KDD Cup Workshop 2007:5–8

    Google Scholar 

  • Qian Y, Li H, Mamoulis N, Liu Y, Cheung DW (2017) Reverse k-ranks queries on large graphs. In: Proceedings of the 20th international conference on extending database technology, EDBT ’17, Venice, Italy, March 21–24, pp 37–48

  • Rendle S (2010) Factorization machines. In: Proceedings of the 10th IEEE international conference on data mining, ICDM ’10, Sydney, Australia, December 14–17, pp 995–1000

  • Resnick P, Iacovou N, Suchak M, Bergstrom P, Riedl J (1994) Grouplens: an open architecture for collaborative filtering of netnews. In: Proceedings of the conference on computer supported cooperative work, CSCW ’94, Chapel Hill, NC, USA, October 22–26, pp 175–186

  • Salakhutdinov R, Mnih A (2007) Probabilistic matrix factorization. In: Proceedings of the 20th international conference on neural information processing systems, NIPS ’07, Vancouver, British Columbia, Canada, December 3–6, pp 1257–1264

  • Shan H, Kattge J, Reich PB, Banerjee A, Schrodt F, Reichstein M (2012) Gap filling in the plant kingdom—trait prediction using hierarchical probabilistic matrix factorization. In: Proceedings of the 29th international conference on machine learning, ICML ’12, Edinburgh, Scotland

  • Shi Y, Larson M, Hanjalic A (2014) Collaborative filtering beyond the user-item matrix: a survey of the state of the art and future challenges. ACM Comput Surv 47(1):3:1–3:45

    Article  Google Scholar 

  • Wang C, Blei DM (2011) Collaborative topic modeling for recommending scientific articles. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’12, San Diego, CA, USA, August 21–24, pp 448–456

  • Wang F, Li T, Wang X, Zhu S, Ding CHQ (2011) Community discovery using nonnegative matrix factorization. Data Min Knowl Discov 22(3):493–521

    Article  MathSciNet  Google Scholar 

  • Wang Q, Cao Z, Xu J, Li H (2012) Group matrix factorization for scalable topic modeling. In: Proceedings of the 35th international ACM SIGIR conference on research and development in information retrieval, SIGIR ’12, Portland, OR, USA, August 12–16, pp 375–384

  • Wang X, Pan W, Xu C (2014) HGMF: hierarchical group matrix factorization for collaborative recommendation. In: Proceedings of the 23rd ACM international conference on conference on information and knowledge management, CIKM ’14, Shanghai, China, November 3–7, pp 769–778

  • Wang S, Tang J, Wang Y, Liu H (2015) Exploring implicit hierarchical structures for recommender systems. In: Proceedings of the 24th international joint conference on artificial intelligence, IJCAI ’15, Buenos Aires, Argentina, July 25–31, pp 1813–1819

  • Wang S, Du C, Zhao K, Li C, Li Y, Zheng Y, Wang Z, Chen H (2016) Random partition factorization machines for context-aware recommendations. In: Proceedings of the 17th international conference on web-age information management—part I, WAIM ’16, Nanchang, China, June 3–5, vol 9658, pp 219–230

  • Wang C, Niepert M, Li H (2018a) LRMM: learning to recommend with missing modalities. In: Proceedings of the 2018 conference on empirical methods in natural language processing, EMNLP ’18, Brussels, Belgium, October 31–November 4, pp 3360–3370

  • Wang S, Tang J, Wang Y, Liu H (2018b) Exploring hierarchical structures for recommender systems. IEEE Trans Knowl Data Eng 30(6):1022–1035

    Article  Google Scholar 

  • Xu W, Liu X, Gong Y (2003) Document clustering based on non-negative matrix factorization. In: Proceedings of the 26th international ACM SIGIR conference on research and development in information retrieval, SIGIR ’03, Toronto, Canada, July 28–August 1, pp 267–273

  • Xu Y, Lam W, Lin T (2014) Collaborative filtering incorporating review text and co-clusters of hidden user communities and item groups. In: Proceedings of the 23rd ACM international conference on information and knowledge management, CIKM ’14, Shanghai, China, November 3–7, pp 251–260

  • Xue H, Dai X, Zhang J, Huang S, Chen J (2017) Deep matrix factorization models for recommender systems. In: Proceedings of the 26th international joint conference on artificial intelligence, IJCAI ’17, Melbourne, Australia, August 19–25, pp 3203–3209

  • Yang X, Steck H, Liu Y (2012) Circle-based recommendation in online social networks. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’12, Beijing, China, August 12–16, pp 1267–1275

  • Zhang S, Wang W, Ford J, Makedon F (2006) Learning from incomplete ratings using non-negative matrix factorization. In: Proceedings of the 6th SIAM international conference on data mining, SDM ’06, Bethesda, MD, USA, April 20–22, pp 549–553

  • Zhong E, Fan W, Yang Q (2012) Contextual collaborative filtering via hierarchical matrix factorization. In: Proceedings of the 12th SIAM international conference on data mining, SDM ’12, Anaheim, California, USA, April 26–28, 2012, pp 744–755

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant No. 61803249) and the Shanghai Sailing Program (Grant No. 18YF1407700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenting Tu.

Additional information

Responsible editor: Pauli Miettinen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Calculation of Eq. 3

$$\begin{aligned} \begin{aligned}&Pr(Q, P, \theta , \mu , \phi , \kappa | R, \varXi )\\&\quad = Pr(Q, P | R, \varXi )\cdot Pr(\theta , \mu , \phi , \kappa | R, \varXi )\\&\quad = Pr(Q, P | R, \varXi )\cdot Pr(\theta , \mu , \phi , \kappa | R)\\&\quad = Pr(Q, P | R, \varXi )\cdot Pr(\theta , \kappa | R)\cdot Pr(\mu , \phi | R)\\&\quad = \frac{Pr(Q, P | R, \varXi )\cdot Pr(R | \theta , \kappa ) \cdot Pr(R | \mu , \phi ) \cdot Pr(\theta , \kappa )\cdot Pr(\mu , \phi )}{Pr(R)\cdot Pr(R)}\\&\quad \propto Pr(Q, P | R, \varXi )\cdot Pr(R | \theta , \kappa ) \cdot Pr(R | \mu , \phi ). \end{aligned} \end{aligned}$$

1.2 Calculation of Eq. 7

$$\begin{aligned}&Pr\left( \left\{ Q^{(\ell )}\right\} ^{l}_{\ell =1}, \left\{ P^{\left( \ell \right) }\right\} ^{l}_{\ell =1}\,|\,\left\{ R^{(\ell )}\right\} _{\ell =1}^{l}, \left\{ S^{(\ell )}\right\} _{\ell }^{l-1}, \left\{ V^{(\ell )}\right\} _{\ell =1}^{l-1}, \varXi \right) \\&\quad =\, \frac{Pr\left( \left\{ R^{(\ell )}\right\} _{\ell =1}^{l}, \left\{ S^{(\ell )}\right\} _{\ell }^{l-1}, \left\{ V^{(\ell )}\right\} _{\ell =1}^{l-1}, \varXi \,|\,\left\{ Q^{(\ell )}\right\} ^{l}_{\ell =1}, \left\{ P^{(\ell )}\right\} ^{l}_{\ell =1}\right) \cdot \Pr \left( \left\{ Q^{(\ell )}\right\} ^{l}_{\ell =1}, \left\{ P^{(\ell )}\right\} ^{l}_{\ell =1}\right) }{Pr(\left\{ R^{(\ell )}\right\} _{\ell =1}^{l}, \left\{ S^{(\ell )}\right\} _{\ell }^{l-1}, \left\{ V^{(\ell )}\right\} _{\ell =1}^{l-1}, \varXi )} \\&\quad \propto \, Pr\left( \left\{ R^{(\ell )}\right\} _{\ell =1}^{l}\,|\,\left\{ Q^{(\ell )}\right\} ^{l}_{\ell =1}, \left\{ P^{(\ell )}\right\} ^{l}_{\ell =1}, \sigma _R^2\right) \\&\qquad \cdot Pr\left( \left\{ S^{(\ell -1)}\right\} _{\ell =1}^{l}\,|\,\left\{ Q^{(\ell )}\right\} ^{l}_{\ell =1}, \left\{ P^{(\ell )}\right\} ^{l}_{\ell =1}, \sigma _S^2\right) \\&Pr\left( \left\{ V^{(\ell -1)}\right\} _{\ell =1}^{l}\,|\,\left\{ Q^{(\ell )}\right\} ^{l}_{\ell =1}, \left\{ P^{(\ell )}\right\} ^{l}_{\ell =1}, \sigma _V^2\right) \\&\qquad \cdot \Pr \left( \left\{ Q^{(\ell )}\right\} ^{l}_{\ell =1}\right) \cdot \Pr \left( \left\{ P^{(\ell )}\right\} ^{l}_{\ell =1}\right) \\&\quad =\, \prod _{\ell =1}^{l}\prod _{r_{ui}\in R^{(\ell )}}{\mathcal {N}}\left( \langle Q_{u}^{(\ell )},P_{i}^{(\ell )}\rangle , \sigma _{R^{(\ell )}}^2\right) \cdot \prod _{\ell =1}^{l-1}\prod _{s_{ui}\in S^{(\ell )}}{\mathcal {N}}\left( \langle Q_{u}^{(\ell +1)},P_{i}^{(\ell )}\rangle , \sigma _{S^{(\ell )}}^2\right) \\&\qquad \prod _{\ell =1}^{l-1}\prod _{v_{ui}\in V^{(\ell )}}{\mathcal {N}}\left( \langle Q_{i}^{(\ell )},P_{j}^{(\ell +1)}\rangle , \sigma _{V^{(\ell )}}^2\right) \cdot \prod _{\ell =1}^{l}\prod _{u=1}^{m^{(\ell )}}\phi ^{(\ell +1)}_{e_u}{\mathcal {N}}\left( Q^{(\ell +1)},\sigma _{Q^{(\ell +1)}}^2\mathrm {I}\right) \\&\qquad \prod _{\ell =1}^{l}\prod _{i=1}^{n^{(\ell )}}\kappa ^{(\ell +1)}_{t_i}{\mathcal {N}}\left( P^{(\ell +1)},\sigma _{P^{(\ell +1)}}^2\mathrm {I}\right) . \end{aligned}$$

1.3 Gradients used in Eq. 9

$$\begin{aligned} \frac{\partial {\mathcal {L}}_{R^{(\ell )}}}{Q_{u}^{(\ell )}}= & {} \nabla _q\left( R^{(\ell )}_{u\cdot },\ell ,\ell \right) -{\mathcal {R}}\left( Q^{(\ell )}_u\right) \end{aligned}$$
(16)
$$\begin{aligned} \frac{\partial {\mathcal {L}}_{R^{(\ell )}}}{P_{i}^{(\ell )}}= & {} \nabla _p\left( R^{(\ell )}_{\cdot i},\ell ,\ell \right) -{\mathcal {R}}\left( P^{(\ell )}_i\right) \end{aligned}$$
(17)
$$\begin{aligned} \frac{\partial {\mathcal {L}}_{S^{(\ell -1)}}}{Q_{u}^{(\ell )}}= & {} \nabla _q\left( S^{(\ell -1)}_{u\cdot },\ell ,\ell -1\right) -{\mathcal {R}}\left( Q^{(\ell )}_u\right) \end{aligned}$$
(18)
$$\begin{aligned} \frac{\partial {\mathcal {L}}_{S^{(\ell -1)}}}{P_{i}^{(\ell -1)}}= & {} \nabla _p\left( S^{(\ell -1)}_{\cdot i},\ell ,\ell -1\right) -{\mathcal {R}}\left( P^{(\ell -1)}_i\right) \end{aligned}$$
(19)
$$\begin{aligned} \frac{\partial {\mathcal {L}}_{V^{(\ell -1)}}}{Q_{u}^{(\ell -1)}}= & {} \nabla _q\left( V^{(\ell -1)}_{u \cdot },\ell -1,\ell \right) -{\mathcal {R}}\left( Q^{(\ell -1)}_u\right) \end{aligned}$$
(20)
$$\begin{aligned} \frac{\partial {\mathcal {L}}_{V^{(\ell -1)}}}{P_{i}^{(\ell )}}= & {} \nabla _p\left( V^{(\ell -1)}_{\cdot i},\ell -1,\ell \right) -{\mathcal {R}}\left( P^{(\ell )}_i\right) \end{aligned}$$
(21)

where

$$\begin{aligned} \nabla _q(R^{(\ell )}_{u\cdot },\ell _1,\ell _2)= & {} \frac{1}{\sigma _R^2}\sum _{r_{ui}\in R^{(\ell )}}(r_{ui}^{(\ell )}-\langle Q_{u}^{(\ell _1)},P_{i}^{(\ell _2)}\rangle )\cdot P_i^{(\ell )} \\ \nabla _p(R^{(\ell )}_{\cdot i},\ell _1,\ell _2)= & {} \frac{1}{\sigma _R^2}\sum _{r_{ui}\in R^{(\ell )}}(r_{ui}^{(\ell )}-\langle Q_{u}^{(\ell _1)},P_{i}^{(\ell _2)}\rangle )\cdot Q_u^{(\ell )} \\ \nabla _{q}(S_{u\cdot }^{(\ell -1)}, \ell , \ell -1)= & {} \frac{1}{\sigma _S^{2}}\sum _{r_{ui}\in R^{(\ell -1)}}\Big (s_{ui}^{(\ell -1)}-\langle Q_{u}^{(\ell )}, P_{i}^{(\ell -1)}\rangle \Big )\cdot P_{i}^{(\ell -1)} \\ \nabla _{p}(S_{\cdot i}^{(\ell -1)}, \ell , \ell -1)= & {} \frac{1}{\sigma _S^{2}}\sum _{r_{ui}\in R^{(\ell )}}\Big (s_{ui}^{(\ell -1)}-\langle Q_{u}^{(\ell )}, P_{i}^{(\ell -1)}\rangle \Big )\cdot Q_{u}^{(\ell )} \\ \nabla _{q}(V_{u\cdot }^{(\ell -1)}, \ell -1, \ell )= & {} \frac{1}{\sigma _V^{2}}\sum _{r_{ui}\in R^{(\ell )}}\Big (v_{ui}^{(\ell -1)}-\langle Q_{u}^{(\ell -1)}, P_{i}^{(\ell )}\rangle \Big )\cdot P_{i}^{(\ell )} \\ \nabla _{p}(V_{\cdot i}^{(\ell -1)}, \ell -1, \ell )= & {} \frac{1}{\sigma _V^{2}}\sum _{r_{ui}\in R^{(\ell -1)}}\Big (v_{ui}^{(\ell -1)}-\langle Q_{u}^{(\ell -1)}, P_{i}^{(\ell )}\rangle \Big )\cdot Q_{u}^{(\ell -1)} \\ {\mathcal {R}}(Q_{u}^{(\ell )})= & {} \frac{1}{\sigma _Q^2}\sum _{r_{ui}\in R^{(\ell )}}\phi _{(e_u,u)}^{(\ell +1)}\Big [\,| WQ _{u}^{(\ell )}|(Q_u^{(\ell )}-{\bar{Q}}^{(\ell -1)}_{ WQ _u^{(\ell )}})+(Q_{u}^{(\ell )}\\&-Q^{(\ell +1)}_{ FQ _u^{(\ell )}})\,\Big ] \\ {\mathcal {R}}(P_{i}^{(\ell )})= & {} \frac{1}{\sigma _P^2}\sum _{r_{ui}\in R^{(\ell )}}\kappa _{(t_i,i)}^{(\ell +1)}\Big [\,| WP _{i}^{(\ell )}|(P_i^{(\ell )}-{\bar{P}}^{(\ell -1)}_{ WP _i^{(\ell )}})+(P_{i}^{(\ell )}\\&-P^{(\ell +1)}_{ FP _i^{(\ell )}})\,\Big ] \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Liu, Y., Qian, Y. et al. HHMF: hidden hierarchical matrix factorization for recommender systems. Data Min Knowl Disc 33, 1548–1582 (2019). https://doi.org/10.1007/s10618-019-00632-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10618-019-00632-4

Keywords

Navigation