Skip to main content
Log in

Exosomes from myoblasts induced by hypoxic preconditioning improved ventricular conduction by increasing Cx43 expression in hypothermia ischemia reperfusion hearts

  • Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Myocardial ischemia–reperfusion arrhythmia after cardiac surgery is common and seriously affects quality of life. Remote ischemic preconditioning can reduce the myocardial damage caused by severe ischemia. However, the underlying mechanism is not well understood. This study aimed to investigate the effects of exosomes derived from C2C12 mouse myoblasts after hypoxic preconditioning (HP) on ventricular conduction in hypothermic ischemia–reperfusion hearts. Myocardial ischemia–reperfusion model rats were established using the Langendorff cardiac perfusion system. Exosomes derived from normoxic (ExoA) and hypoxia-preconditioned (ExoB) C2C12 cells were injected into the jugular vein of the model rats. The time to heartbeat restoration, arrhythmia type and duration, and heart rate were recorded after myocardial ischemia–reperfusion. Conduction velocity on the surface of left ventricle was measured using a microelectrode array after 30 min of balanced perfusion, 15 min of reperfusion, and 30 min of reperfusion. Immunohistochemistry and western blotting were performed to determine the distribution and relative expression of connexin 43 (Cx43). ExoB contained more exosomes than ExoA, showing that HP stimulated the release of exosomes. The IR + ExoB group showed faster recovery of ventricular myocardial activity, a lower arrhythmia score, faster conduction velocity, and better electrical conductivity than the IR group. ExoB increased the expression of Cx43 and reduced its lateralization in the ventricular muscle. Our study showed that exosomes induced by hypoxic preconditioning can improve ventricular myocardial conduction and reperfusion arrhythmia in isolated hearts after hypothermic ischemia–reperfusion.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed in this study are available from the corresponding authors upon reasonable request.

References

  • Amanakis G, Kleinbongard P, Heusch G et al (2019) Attenuation of ST-segment elevation after ischemic conditioning maneuvers reflects cardioprotection online. Basic Res Cardiol 114:22

    Article  PubMed  Google Scholar 

  • An L, Gao H, Zhong Y et al (2023) The potential roles of stress-induced phosphoprotein 1 and connexin 43 in rats with reperfusion arrhythmia. Immunity Inflam Dis 11:852

    Article  Google Scholar 

  • Bernikova OG, Sedova KA, Arteyeva NV et al (2018) Repolarization in perfused myocardium predicts reperfusion ventricular tachyarrhythmias. J Electrocardiol 51:542–548

    Article  PubMed  Google Scholar 

  • Chaput N, Théry C (2011) Exosomes: immune properties and potential clinical implementations. Semin Immunopathol 33:419–440

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Wang Q, Liu X et al (2022) Hypoxic pancreatic cancer derived exosomal miR-30b-5p promotes tumor angiogenesis by inhibiting GJA1 expression. Int J Biol Sci 18:1220–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho YJ, Kim WH (2019) Perioperative cardioprotection by remote ischemic conditioning. Int J Mol Sci 20:4839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho HJ, Velichkovska M, Schurhoff N et al (2021) Extracellular vesicles regulate gap junction-mediated intercellular communication and HIV-1 infection of human neural progenitor cells. Neurobiol Dis 155:105388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson SM, Ferdinandy P, Andreadou I et al (2019) Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week. J Am Coll Cardiol 73:89–99

    Article  PubMed  Google Scholar 

  • Donato M, Bin EP et al (2021) Myocardial remote ischemic preconditioning: from cell biology to clinical application. Mol Cell Biochem 476:3857–3867

    Article  CAS  PubMed  Google Scholar 

  • Gao R, Wang L, Bei Y et al (2021) Long noncoding RNA cardiac physiological hypertrophy-associated regulator induces cardiac physiological hypertrophy and promotes functional recovery after myocardial ischemia-reperfusion injury. Circulation 144:303–317

    Article  CAS  PubMed  Google Scholar 

  • Gemel J, Kilkus J, Dawson G et al (2019) Connecting exosomes and connexins. Cancers (basel) 11:476

    Article  CAS  PubMed  Google Scholar 

  • Giricz Z, Varga ZV, Baranyai T et al (2014) Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles. J Mol Cell Cardiol 68:75–78

    Article  CAS  PubMed  Google Scholar 

  • Gonca E, Darici F (2015) The effect of cannabidiol on ischemia/reperfusion-induced ventricular arrhythmias: the role of adenosine A1 receptors. J Cardiovasc Pharmacol Ther 20:76–83

    Article  CAS  PubMed  Google Scholar 

  • Heusch G, Bøtker HE, Przyklenk K et al (2015) Remote ischemic conditioning. J Am Coll Cardiol 65:177–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou Z, Qin X, Hu Y et al (2019) Longterm exercise-derived exosomal miR-342-5p: A novel exerkine for cardioprotection. Circ Res 124:1386–1400

    Article  CAS  PubMed  Google Scholar 

  • Ibáñez B, Herusch G, Ovize M et al (2015) Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol 65:1454–1471

    Article  PubMed  Google Scholar 

  • Jalabert A, Vial G, Guay C, Wiklander OP, Nordin JZ, Aswad H, Forterre A, Meugnier E, Pesenti S, Regazzi R, Danty-Berger E, Ducreux S, Vidal H, El-Andaloussi S, Rieusset J, Rome S (2016) Exosome-like vesicles released from lipid-induced insulin-resistant muscles modulate gene expression and proliferation of beta recipient cells in mice. Diabetologia 59:1049–1058

    Article  CAS  PubMed  Google Scholar 

  • Kadric N, Osmanovic E (2017) Rhythm disturbance after myocardial revascularization. Med Arch 71:400–403

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalluri R, Lebleu VS (2020) The biology, function, and biomedical applications of exosomes. Science 367:6478

    Article  Google Scholar 

  • Kharbanda RK, Mortensen UM, White PA et al (2002) Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation 106:2881–2883

    Article  CAS  PubMed  Google Scholar 

  • Kindernay L, Farkasova V, Neckar J et al (2021) Impact of maturation on myocardial response to ischemia and the effectiveness of remote preconditioning in male rats. Int J Mol Sci 22:11009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinbongard P, BøTKER HE, Ovize M et al (2020) Co-morbidities and co-medications as confounders of cardioprotection-Does it matter in the clinical setting? Br J Pharmacol 177:5252–5269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koritzinsky EH, Street JM, Star RA et al (2017) Quantification of Exosomes [J]. J Cell Physiol 232:1587–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulek AR, Anzell A, Wider JM et al (2020) Mitochondrial quality control: role in cardiac models of lethal ischemia-reperfusion injury. Cells 9:214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lassen TR, Just J, Hjortbak MV et al (2021) Cardioprotection by remote ischemic conditioning is transferable by plasma and mediated by extracellular vesicles. Basic Res Cardiol 116:16

    Article  CAS  PubMed  Google Scholar 

  • Lazo S, Noren Hooten N, Green J et al (2021) Mitochondrial DNA in extracellular vesicles declines with age. Aging Cell 20:e13283

    Article  CAS  PubMed  Google Scholar 

  • Li W, Gao H, Gao J et al (2019a) Upregulation of MMP-9 and CaMKII prompts cardiac electrophysiological changes that predispose denervated transplanted hearts to arrhythmogenesis after prolonged cold ischemic storage. Biomed Pharmacotherapy 112:108641

    Article  CAS  Google Scholar 

  • Li W, Gao H, Gao J et al (2019b) Antiarrhythmic effect of sevoflurane as an additive to HTK solution on reperfusion arrhythmias induced by hypothermia and ischaemia is associated with the phosphorylation of connexin 43 at serine 368. BMC Anesthesiol 19:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Shi K, Chen Y, Wu X, Chen Z, Cao K, Tao Y, Chen X, Liao J, Zhou J (2021) Exosomes and their role in cancer progression. Front Oncol 22:639159

    Article  Google Scholar 

  • Luo Z, Hu X, Wu C et al (2023) Plasma exosomes generated by ischaemic preconditioning are cardioprotective in a rat heart failure model. Br J Anaesth 130:29–38

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Cao Y, Gao H et al (2023) Sevoflurane improves ventricular conduction by exosomes derived from rat cardiac fibroblasts after hypothermic global ischemia-reperfusion injury. Drug Design Development Therapy 17:1719–1732

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahoney VM, Mezzano V, Mirams GR et al (2016) Connexin43 contributes to electrotonic conduction across scar tissue in the intact heart. Sci Rep 6:26744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik ZA, Kott KS, Poe AJ et al (2013) Cardiac myocyte exosomes: stability, HSP60, and proteomics. Am J Physiol Heart Circ Physiol 304:H954–H965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minghua W, Zhijian G, Chahua H et al (2018) Plasma exosomes induced by remote ischaemic preconditioning attenuate myocardial ischaemia/reperfusion injury by transferring miR-24. Cell Death Dis 9:320

    Article  PubMed  PubMed Central  Google Scholar 

  • Oxman T, Arad M, Klein R et al (1997) Limb ischemia preconditions the heart against reperfusion tachyarrhythmia. Am J Physiol 273:H1707–H1712

    CAS  PubMed  Google Scholar 

  • Patil KD, Halperin HR, Becker LB (2015) Cardiac arrest: resuscitation and reperfusion. Circ Res 116:2041–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Przyklenk K, Bauer B, Ovize M et al (1993) Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87:893–899

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro-Rordrigues TM, Martins-Marques T, Morel S et al (2017) Role of connexin 43 in different forms of intercellular communication - gap junctions, extracellular vesicles and tunnelling nanotubes. J Cell Sci 130:3619–3630

    Google Scholar 

  • Shimaoka M, Kawamoto E, Gaowa A, Okamoto T, Park EJ (2019) Connexins and integrins in exosomes. Cancers 11:106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soares AR, Martins-Marques T, Ribeiro-Rodrigues T et al (2015) Gap junctional protein Cx43 is involved in the communication between extracellular vesicles and mammalian cells. Sci Rep 5:13243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi Y, Nishikawa M, Shinotsuka H, Matsui Y, Ohara S, Imai T, Takakura Y (2013) Visualization and in vivo tracking of the exosomes of murine melanoma b16-bl6 cells in mice after intravenous injection. J Biotechnol 165:77–84

    Article  CAS  PubMed  Google Scholar 

  • Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, Simpson RJ (2012) Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56:293–304

    Article  CAS  PubMed  Google Scholar 

  • Vicencio JM, Yellon DM, Sivaraman V et al (2015) Plasma exosomes protect the myocardium from ischemia-reperfusion injury [J]. J Am Coll Cardiol 65:1525–1536

    Article  CAS  PubMed  Google Scholar 

  • Walker MJ, Curtis MJ, Hearse DJ et al (1988) The Lambeth Conventions: guidelines for the study of arrhythmias in ischaemia infarction, and reperfusion. Cardiovasc Res 22:447–455

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Gu H, Huang W et al (2016) Hsp20-mediated activation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice. Diabetes 65:3111–3128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Dai D, Gao H et al (2019) Sevoflurane alleviates reperfusion arrhythmia by ameliorating TDR and MAPD(90) in isolated rat hearts after ischemia-reperfusion. Anesthesiol Res Practice 2019:7910930

    Article  Google Scholar 

  • Yan Y, Gu T, Christensen SDK et al (2021a) Cyclic hypoxia conditioning alters the content of myoblast-derived extracellular vesicles and enhances their cell-protective functions. Biomedicines 9:1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Z, Du L, Liu Q et al (2021b) Remote limb ischaemic conditioning produces cardioprotection in rats with testicular ischaemia-reperfusion injury. Exp Physiol 106:2223–2234

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Shi J, Xie J et al (2020) Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat Biomed Eng 4:69–83

    Article  CAS  PubMed  Google Scholar 

  • Yang ZJ, Zhang LL, Bi QC, Gan LJ, Wei MJ, Hong T, Tan RJ, Lan XM, Liu LH, Han XJ, Jiang LP (2021) Exosomal connexin 43 regulates the resistance of glioma cells to temozolomide. Oncol Rep 45:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang ZJ, Bi QC, Gan LJ, Zhang LL, Wei MJ, Hong T, Liu R, Qiu CL, Han XJ, Jiang LP (2022) Exosomes derived from glioma cells under hypoxia promote angiogenesis through up-regulated exosomal connexin 43. Int J Med Sci 19:1205–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi J, Duan H, Chen K et al (2022) Cardiac Electrophysiological changes and downregulated connexin 43 prompts reperfusion arrhythmias induced by hypothermic ischemia-reperfusion injury in isolated rat hearts. J Cardiovasc Transl Res 15:1464–1473

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jianman Wang (M.D.College of Basic Medical College, Guizhou Medical University, Guiyang, Guizhou, China), Sihui Lu (M.D.College of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou, China) and Anqiang Zhou (M.D.College of Clinic, Guizhou Medical University, Guiyang, Guizhou, China) for their kindful assistance with this study.

Funding

This study was supported by the Science and Technology Fund of the Guizhou Provincial Health Commission (Grant No. Gzwkj2021-270; Gzwkj2022-131).

Author information

Authors and Affiliations

Authors

Contributions

Tingju Hu and Rui Duan conducted experiments, collected data, and wrote the manuscript; Hong Gao was responsible for project conceptualization and design, and manuscript proofreading; Xue Bai, Xiang Huang, Rui Chen, Li An, Xu Yan, Yanyan Ma, Sen Hong, and Mi Gan conducted the experiments. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hong Gao.

Ethics declarations

Conflict of Interest

All authors declare no conflict of interest.

Ethical approval

This study was approved by the Ethics Committee of Guizhou Medical University (Approval number: 2200390). All animal handling and experiments were conducted in accordance with the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The rats were provided by the Animal Experimental Center of Guizhou Medical University [license no. : SCXK (Qian) 2018-0001]. The rats were housed under a 12 h light-dark cycle and were given free access to food and water.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, T., Duan, R., Gao, H. et al. Exosomes from myoblasts induced by hypoxic preconditioning improved ventricular conduction by increasing Cx43 expression in hypothermia ischemia reperfusion hearts. Cytotechnology (2024). https://doi.org/10.1007/s10616-024-00634-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10616-024-00634-1

Keywords

Navigation