Skip to main content

Advertisement

Log in

Assessment of ability of human adipose derived stem cells for long term overexpression of IL-11 and IL-13 as therapeutic cytokines

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Adipose-derived stem cells (ADSCs) are a type of mesenchymal stem cells with the therapeutic effects that make them one of the best sources for cell therapy. In this study, we aimed to assess the ability of human ADSCs for constant expression of IL-11 and IL-13, simultaneously. In this study, the characterized hADSCs were transduced with a lentiviral vector (PCDH-513B) containing IL-11 and IL-13 genes, and the ability of long-term expression of the transgenes was evaluated by ELISA technique on days 15, 45 and 75 after transduction. Our results indicated a high rate of transduction (more than 90%) in the isolated hADSCs. Our data showed the highest rate of expression on days 75 after transduction which was 242.67 pg/ml for IL-11 and 303.6 pg/ml for IL-13 compared with 35.2 pg/ml and 35.6 pg/ml in untreated cells, respectively (p = 0.001). Besides, MTT assay showed transduction of hADSCs with lentiviral viruses containing IL-11 and IL-13 had no adverse effect on hADSCs proliferation (p-value = 0.89). Finally, we successfully constructed a hADSC population stably overexpressing IL-11 as the neurotrophic cytokine and IL-13 as the anti-inflammatory cytokine and this transduced cells can be used for further studies in EAE mice model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  • Alizadeh A et al (2015) Lentiviral mediated overexpression of NGF in adipose-derived stem cells. Clon Trans 4:3

    Google Scholar 

  • Association GA (2014) World medical association declaration of Helsinki: ethical principles for medical research involving human subjects. J Am College Dent 81:14

    Google Scholar 

  • Barde I, Salmon P, Trono D (2010) Production and titration of lentiviral vectors. Curr Protocols Neurosci 53:1–23

    Google Scholar 

  • Ciuffreda MC et al (2016) Protocols for in vitro differentiation of human mesenchymal stem cells into osteogenic, chondrogenic and adipogenic lineages mesenchymal stem cells. Springer, Berlin, pp 149–158

    Google Scholar 

  • Colombet J et al (2007) Virioplankton ‘pegylation’: use of PEG (polyethylene glycol) to concentrate and purify viruses in pelagic ecosystems. J Microbiol Methods 71:212–219

    CAS  PubMed  Google Scholar 

  • Constantin G et al (2009) Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem cells 27:2624–2635

    CAS  PubMed  Google Scholar 

  • Cuascut FX, Hutton GJ (2019) Stem cell-based therapies for multiple sclerosis: current perspectives. Biomedicines 7:26

    CAS  PubMed Central  Google Scholar 

  • Dargahi N et al (2017) Multiple sclerosis: immunopathology and treatment update. Brain Sci 7:78

    PubMed Central  Google Scholar 

  • Dooley D et al (2016) Cell-based delivery of interleukin-13 directs alternative activation of macrophages resulting in improved functional outcome after spinal cord injury. Stem Cell Reports 7:1099–1115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dulamea A (2015) Mesenchymal stem cells in multiple sclerosis-translation to clinical trials. J Med Life 8:24

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghasemi N (2015) Therapeutic effects of adipose derived mesenchymal stem cells on remyelination process in inflammatory demyelinating diseases. J Histol Histopathol 2:8

    Google Scholar 

  • Guan J et al (2015) Bone morphogenetic protein 2 gene transduction enhances the osteogenic potential of human urine-derived stem cells. Stem Cell Res Ther 6:5

    PubMed  PubMed Central  Google Scholar 

  • Guglielmetti C et al (2016) Interleukin-13 immune gene therapy prevents CNS inflammation and demyelination via alternative activation of microglia and macrophages. Glia 64:2181–2200

    PubMed  Google Scholar 

  • Gurfein BT et al (2009) IL-11 regulates autoimmune demyelination. J Immunol 183:4229–4240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimiskidis V, Fassas A (2013) Stem cell-based therapies in multiple sclerosis. J Genet Syndr Gene Ther S 3:2

    Google Scholar 

  • Klages N, Zufferey R, Trono D (2000) A stable system for the high-titer production of multiply attenuated lentiviral vectors. Mol Ther 2:170–176

    CAS  PubMed  Google Scholar 

  • Kolosowska N et al (2019) Peripheral administration of IL-13 induces anti-inflammatory microglial/macrophage responses and provides neuroprotection in ischemic stroke. Neurotherapeutics 1:16

    Google Scholar 

  • Liu X, Clark AF, Wordinger RJ (2007) Expression of ciliary neurotrophic factor (CNTF) and its tripartite receptor complex by cells of the human optic nerve head. Mol Vision 13:758

    CAS  Google Scholar 

  • Liu Y et al (2012) Lentiviral-mediated gene transfer into human adipose-derived stem cells: role of NELL1 versus BMP2 in osteogenesis and adipogenesis in vitro. Acta Biochim Biophys Sin 44:856–865

    CAS  PubMed  Google Scholar 

  • Machado CV, Telles PD, Nascimento IL (2013) Immunological characteristics of mesenchymal stem cells. Revista brasileira de hematologia e hemoterapia 35:62–67

    PubMed  PubMed Central  Google Scholar 

  • Maheshwari A et al (2013) Local overexpression of interleukin-11 in the central nervous system limits demyelination and enhances remyelination. Mediat Inflamm 2013:685317

    Google Scholar 

  • Maria AT et al (2017) Adipose-derived mesenchymal stem cells in autoimmune disorders: state of the art and perspectives for systemic sclerosis. Clin Rev Allergy Immunol 52:234–259

    CAS  PubMed  Google Scholar 

  • Mazini L et al (2019) Regenerative capacity of adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs). Int J Mol Sci 20:2523

    CAS  PubMed Central  Google Scholar 

  • McLaughlin KA, Wucherpfennig KW (2008) B cells and autoantibodies in the pathogenesis of multiple sclerosis and related inflammatory demyelinating diseases. Adv Immunol 98:121–149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyerrose TE et al (2008) Lentiviral-transduced human mesenchymal stem cells persistently express therapeutic levels of enzyme in a xenotransplantation model of human disease. Stem Cells 26:1713–1722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mori S, Maher P, Conti B (2016) Neuroimmunology of the interleukins 13 and 4. Brain Sci 6:18

    PubMed Central  Google Scholar 

  • Münzel EJ, Williams A (2013) Promoting remyelination in multiple sclerosis—recent advances. Drugs 73:2017–2029

    PubMed  Google Scholar 

  • Nair A, Frederick TJ, Miller SD (2008) Astrocytes in multiple sclerosis: a product of their environment. Cell Mol Life Sci 65:2702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ochoa-Repáraz J et al (2008) IL-13 production by regulatory T cells protects against experimental autoimmune encephalomyelitis independently of autoantigen. J Immunol 181:954–968

    PubMed  PubMed Central  Google Scholar 

  • Patel J, Balabanov R (2012) Molecular mechanisms of oligodendrocyte injury in multiple sclerosis and experimental autoimmune encephalomyelitis. Int J Mol Sci 13:10647–10659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Payne NL et al (2012) Early intervention with gene-modified mesenchymal stem cells overexpressing interleukin-4 enhances anti-inflammatory responses and functional recovery in experimental autoimmune demyelination. Cell Adhes Migr 6:179–189

    Google Scholar 

  • Payne NL et al (2013) Human adipose-derived mesenchymal stem cells engineered to secrete IL-10 inhibit APC function and limit CNS autoimmunity. Brain Behav Immun 30:103–114

    CAS  PubMed  Google Scholar 

  • Peferoen L et al (2014) Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology 141:302–313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Regmi S et al (2019) Mesenchymal stem cell therapy for the treatment of inflammatory diseases: challenges, opportunities, and future perspectives. Eur J Cell Biol 98:5–8

    Google Scholar 

  • Rostami M, Haidari K, Shahbazi M (2018) The Human IL-23 Decoy Receptor Inhibits T-Cells Producing IL-17 by Genetically Engineered Mesenchymal Stem Cells. Int J Cell Biol. https://doi.org/10.1089/cell.2018.0006

    Article  PubMed  PubMed Central  Google Scholar 

  • Sochocka M, Diniz BS, Leszek J (2017) Inflammatory response in the CNS: friend or foe? Mol Neurobiol 54:8071–8089

    CAS  PubMed  Google Scholar 

  • Tavazzi E, Rovaris M, La Mantia L (2014) Drug therapy for multiple sclerosis. CMAJ 186:833–840

    PubMed  PubMed Central  Google Scholar 

  • Van Vollenstee FA et al (2016) Human adipose derived mesenchymal stromal cells transduced with GFP lentiviral vectors: assessment of immunophenotype and differentiation capacity in vitro. Cytotechnology 68:2049–2060

    PubMed  PubMed Central  Google Scholar 

  • Vizoso FJ et al (2017) Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 18:1852

    PubMed Central  Google Scholar 

  • Wang JM et al (2017) Isolation, culture and identification of human adipose-derived stem cells. Exp Ther Med 13:1039–1043

    CAS  PubMed  PubMed Central  Google Scholar 

  • Way SW et al (2015) Pharmaceutical integrated stress response enhancement protects oligodendrocytes and provides a potential multiple sclerosis therapeutic. Nat Commun 6:6532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winkelmann A et al (2014) Multiple sclerosis treatment and infectious issues: update 2013. Clin Exp Immunol 175:425–438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y et al (2006) Interleukin-11 potentiates oligodendrocyte survival and maturation, and myelin formation. J Neurosci 26:12174–12185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J et al (2011) Promoting myelin repair and return of function in multiple sclerosis. FEBS Lett 585:3813–3820

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zuk PA (2011) Viral transduction of adipose-derived stem cells adipose-derived stem cells. Springer, Berlin, pp 345–357

    Google Scholar 

Download references

Funding

This study was supported by Isfahan University of Medical Sciences, Isfahan, Iran (Grant No: 397053).

Author information

Authors and Affiliations

Authors

Contributions

AE: Experimental procedures, and preparation of the manuscript; MAA: Experimental procedures, and preparation of the manuscript; MD: Experimental procedures; MA: Experimental procedures; HS: Supervision of the cell culture procedures and study design; MGH: Supervision of the study, data analysis and finalizing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mazdak Ganjalikhani-Hakemi.

Ethics declarations

Ethics approval and consent to participate

This study is approved by the ethics committee of the Isfahan University of Medical Sciences, Isfahan, Iran (IR.MUI.MED.REC.1397.026).

Consent to participate

All authors agree to participate in this research study.

Consent for publication

All authors agree to this publication.

Competing interest

There are no conflicts of interest among the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eslami, A., Dehbashi, M., Ashja-Arvan, M. et al. Assessment of ability of human adipose derived stem cells for long term overexpression of IL-11 and IL-13 as therapeutic cytokines. Cytotechnology 72, 773–784 (2020). https://doi.org/10.1007/s10616-020-00421-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-020-00421-8

Keywords

Navigation