Skip to main content

Advertisement

Log in

Role of nanoparticles in osteogenic differentiation of bone marrow mesenchymal stem cells

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The present study aimed to investigate the osteoinductive potentiality of some selected nanostructures; Hydroxyapatite (HA-NPs), Gold (Au-NPs), Chitosan (C-NPs), Gold/hydroxyapatite (Au/HA-NPs) and Chitosan/hydroxyapatite (CH-NPs) on bone marrow- derived mesenchymal stem cells (BM-MSCs). These nanostructures were characterized using transmission electron microscope and Zetasizer. MSCs were isolated from bone marrow of rat femur bones and their identity was documented by morphology, flow cytometry and multi-potency capacity. The influence of the selected nanostructures on the viability, osteogenic differentiation and subsequent matrix mineralization of BM-MSCs was determined by MTT assay, molecular genetic analysis and alizarin red S staining, respectively. MTT analysis revealed insignificant toxicity of the tested nanostructures on BM-MSCs at concentrations ranged from 2 to 25 µg/ml over 48 h and 72 h incubation period. Notably, the tested nanostructures potentiate the osteogenic differentiation of BM-MSCs as evidenced by a prominent over-expression of runt-related transcription factor 2 (Runx-2) and bone morphogenetic protein 2 (BMP-2) genes after 7 days incubation. Moreover, the tested nanostructures induced matrix mineralization of BM-MSCs after 21 days as manifested by the formation of calcium nodules stained with alizarin red S. Conclusively, these data provide a compelling evidence for the functionality of the studied nanostructures as osteoinductive materials motivating the differentiation of BM-MSCs into osteoblasts with the most prominent effect observed with Au-NPs and Au/HA-NPs, followed by CH-NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akahane M, Ueha T, Shimizu T, Inagaki Y, Kido A, Imamura T, Kawate K, Tanaka Y (2012) Increased osteogenesis with hydroxyapatite constructs combined with serially-passaged bone marrow-derived mesenchymal stem cells. Stem Cell Discov 2:133–140

    Google Scholar 

  • Bayati V, Hashemitabar M, Gazor R, Nejatbakhsh R, Bijannejad D (2013) Expression of surface markers and myogenic potential of rat bone marrow and adipose-derived stem cells: a comparative study. Anat Cell Biol 46:113–121

    PubMed  PubMed Central  Google Scholar 

  • Benoit DSW, Collins SD, Anseth KS (2007) Multifunctional hydrogels that promote osteogenic human mesenchymal stem cell differentiation through stimulation and sequestering of bone morphogenic protein 2. Adv Funct Mater 17:2085–2093

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Y, Liu Y, Yan W, Hu Q, Tao J, Zhang M, Shic Z, Tang R (2007) Role of hydroxyapatite nanoparticle size in bone cell proliferation. J Mater Chem 17:3780–3787

    CAS  Google Scholar 

  • Chen Y, Huang Z, Li X, Li S, Zhou Z, Zhang Y, Feng Q, Yu B (2012) In vitro biocompatibility and osteoblast differentiation of an injectable chitosan/nano-hydroxyapatite/collagen scaffold. J Nanomater 2012:1–6. https://doi.org/10.1155/2012/401084

    Article  CAS  Google Scholar 

  • Chen H, Dorrigan A, Saad S, Hare DJ, Cortie MB, Valenzuela SM (2013) In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice. PLoS ONE 8:e58208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi SY, Song MS, Ryu PD, Lam ATN, Joo S-W, Lee SY (2015) Gold nanoparticles promote osteogenic differentiation in human adipose-derived mesenchymal stem cells through the Wnt/β-catenin signaling pathway. Int J Nanomed 10:4383–4392

    CAS  Google Scholar 

  • Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327

    CAS  PubMed  Google Scholar 

  • Crisan L, Crisan B, Soritau O, Baciut M, Biris AR, Baciut G, Lucaciu O (2015) In vitro study of biocompatibility of a graphene composite with gold nanoparticles and hydroxyapatite on human osteoblasts. J Appl Toxicol 35:1200–1210

    CAS  PubMed  Google Scholar 

  • Dhivya S, Saravanan S, Sastry TP, Selvamurugan N (2015) Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. J Nanobiotechnol 13:40

    CAS  Google Scholar 

  • Eliaz N, Metoki N (2017) Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Mater (Basel) 10:e334. https://doi.org/10.3390/ma10040334

    Article  CAS  Google Scholar 

  • Ferreira dos Santos C, Gomes PS, Almeida MM, Willinger M, Franke R, Fernandescd MH, El Costa M (2015) Gold-dotted hydroxyapatite nanoparticles as multifunctional platforms for medical applications. RSC Adv 5:69184–69195

    CAS  Google Scholar 

  • Fitzsimmons REB, Mazurek MS, Soos A, Simmons CA (2018) Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem Cells Int 2018:1–16. https://doi.org/10.1155/2018/8031718

    Article  CAS  Google Scholar 

  • Freese C, Gibson MI, Klok HA, Unger RE, Kirkpatrick CJ (2012a) Size- and coating-dependent uptake of polymer-coated gold nanoparticles in primary human dermal microvascular endothelial cells. Biomacromol 13:1533–1543

    CAS  Google Scholar 

  • Freese C, Uboldi C, Gibson MI, Unger RE, Weksler BB, Romero IA, Couraud P-O, Kirkpatrick CJ (2012b) Uptake and cytotoxicity of citrate-coated gold nanospheres: comparative studies on human endothelial and epithelial cells. Part. Fibre Toxicol 9:23

    CAS  Google Scholar 

  • Grenha A, Seijo B, Remunan-Lopez C (2005) Microencapsulated chitosan nanoparticles for lung protein delivery. Eur J Pharm Sci 25:427–437

    CAS  PubMed  Google Scholar 

  • Guidotti S, Facchini A, Platano D, Olivotto E, Minguzzi M, Trisolino G, Filrdo G, Cetrullo S, Tantini B, Martucci E, Facchini A, Flamigni F, Borzi RM (2013) Enhanced osteoblastogenesis of adipose-derived stem cells on spermine delivery via beta-catenin activation. Stem Cells Dev 22:1588–1601

    CAS  PubMed  Google Scholar 

  • Hamidouche Z, Hay E, Vaudin P, Charbord P, Schule R, Marie PJ, Fromigue O (2008) FHL2 mediates dexamethasone-induced mesenchymal cell differentiation into osteoblasts by activating Wnt/beta-catenin signalingdependent Runx2 expression. Faseb J 22:3813–3822

    CAS  PubMed  Google Scholar 

  • Heo DN, Ko WK, Bae MS, Lee JB, Lee D-W, Byun W, Lee CH, Kim E-C, Jung B-Y, Kwon K (2014) Enhanced bone regeneration with a gold nanoparticle–hydrogel complex. J Mater Chem B Mater Biol Med 2:1584–1594

    CAS  Google Scholar 

  • Hu J, Zhou Y, Huang L, Liu J, Lu H (2014) Effect of nano-hydroxyapatite coating on the osteoinductivity of porous biphasic calcium phosphate ceramics. BMC Musculoskelet Disord 15:114

    PubMed  PubMed Central  Google Scholar 

  • Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88:792–806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Zhou G, Zheng L, Liu H, Niu X, Fan Y (2012) Micro-/nano- sized hydroxyapatite directs differentiation of rat bone marrow derived mesenchymal stem cells towards an osteoblast lineage. Nanoscale 4:2484–2490

    CAS  PubMed  Google Scholar 

  • Hunter RJ (1981) Zeta potential in colloid science: principles and applications. Academic Press, New York

    Google Scholar 

  • Iswanti FC, Nurulita I, Djauzi S, Sadikin M, Witarto AB, Yamazaki T (2019) Preparation, characterization, and evaluation of chitosan-based nanoparticles as CpG ODN carriers. Biotechnol Biotechnol Equip. https://doi.org/10.1080/13102818.2019.1578690

    Article  Google Scholar 

  • Jones GL, Motta A, Marshall MJ, El Haj AJ, Cartmell SH (2009) Osteoblast: osteoclast co-cultures on silk fibroin, chitosan and PLLA films. Biomaterials 30:5376–5384

    CAS  PubMed  Google Scholar 

  • Khan JA, Pillai B, Das TK, Singh Y, Maiti S (2007) Molecular effects of uptake of gold nanoparticles in HeLa cells. ChemBioChem 8:1237–1240

    CAS  PubMed  Google Scholar 

  • Khatiwala CB, Kim PD, Peyton SR, Putnam AJ (2009) ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK. J Bone Miner Res 24:886–898

    CAS  PubMed  Google Scholar 

  • Kim K, Dean D, Lu A, Mikos AG, Fisher JP (2011) Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticle content and initial cell seeding density in biodegradable nanocomposite scaffolds. Acta Biomater 7:1249–1264. https://doi.org/10.1016/j.actbio.2010.11.007

    Article  CAS  PubMed  Google Scholar 

  • Ko WK, Heo DN, Moon HJ, Lee SJ, Bae MS, Lee JB, Sun IC, Jeon HB, Park HK, Kwon IK (2015) The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells. J Colloid Interface Sci 438:68–76. https://doi.org/10.1016/j.jcis.2014.08.058

    Article  CAS  PubMed  Google Scholar 

  • Komori T (2003) Requisite roles of Runx2 and Cbfb in skeletal development. J Bone Miner Metab 21:193–197

    CAS  PubMed  Google Scholar 

  • Levengood SKL, Zhang M (2014) Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B 2:3161–3184. https://doi.org/10.1039/C4TB00027G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Li JJ, Zhang J, Wang X, Kawazoea N, Chen G (2016) Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells. Nanoscale 8:7992–8007

    CAS  PubMed  Google Scholar 

  • Lian JB, Stein GS, Javed A, Van Wijnen AJ, Stein L, Montecino M, Hassan MQ, Gaur T, Lengner CJ, Young DW (2006) Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord 7:1–16

    CAS  PubMed  Google Scholar 

  • Linard C, Brachet M, L’homme B, Strup-Perrot C, Busson E, Bonneau M, Lataillade JJ, Bey E, Benderitter M (2018) Long-term effectiveness of local BM-MSCs for skeletal muscle regeneration: a proof of concept obtained on a pig model of severe radiation burn. Stem Cell Res Ther 9:299. https://doi.org/10.1186/s13287-018-1051-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu DD, Yi CQ, Zhang DW, Zhang JC, Yang MS (2010a) Inhibition of proliferation and differentiation of mesenchymal stern cells by carboxylated carbon nanotubes. ACS Nano 4:2185–2195

    CAS  PubMed  Google Scholar 

  • Liu DD, Zhang JC, Yi CQ, Yang M (2010b) The effects of gold nanoparticles on the proliferation, differentiation, and mineralization function of MC3T3-E1 cells in vitro. Chin Sci Bull 55:1013–1019. https://doi.org/10.1007/s11434-010-0046-1

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    CAS  Google Scholar 

  • Lock J, Liu H (2011) Nanomaterials enhance osteogenic differentiation of human mesenchymal stem cells similar to a short peptide of BMP-7. Int J Nanomed 6:2769–2777

    CAS  Google Scholar 

  • Lu Z, Roohani-Esfahani S-I, Kwok PCL, Zreiqat H (2011) Osteoblasts on rod shaped hydroxyapatite nanoparticles incorporated pcl film provide an optimal osteogenic niche for stem cell differentiation. Tissue Eng Part A 17:1651–1661

    CAS  PubMed  Google Scholar 

  • Ma X-Y, Feng Y-F, Wang T-S, Le WI, Li X, Zhou D-P, Wen X-X, Yu H-L, Xiang L-B, Wang L (2018) Involvement of FAK-mediated BMP-2/Smad pathway in mediating osteoblast adhesion and differentiation on nano-HA/chitosan composite coated titanium implant under diabetic conditions. Biomater Sci 6:225–238

    CAS  Google Scholar 

  • Macri-Pellizzeri L, De Melo N, Ahmed I, Grant D, Scammell B, Sottile V (2018) Live quantitative monitoring of mineral depositionin stem cells using tetracycline hydrochloride. Tissue Eng Part C Methods 24:171–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahla RS (2016) Stem cells applications in regenerative medicine and disease therapeutics. Int J Cell Biol 2016:6940283

    PubMed  PubMed Central  Google Scholar 

  • Mansour SF, El-dek SI, Ahmed MK (2017) Physico-mechanical and morphological features of zirconia substituted hydroxyapatite nanocrystals. Sci Rep 7:43202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mauricio MD, Guerra-Ojeda S, Marchio P, Valles SL, Aldasoro M, Escribano-Lopez I, Herance JR, Rocha M, Vila JM, Victor VM (2018) Nanoparticles in medicine: a focus on vascular oxidative stress. Oxid Med Cell Longev 2018:6231482. https://doi.org/10.1155/2018/6231482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller P, Lemcke H, David R (2018) Stem cell therapy in heart diseases – cell types, mechanisms and improvement strategies. Cell Physiol Biochem 48:2607–2655. https://doi.org/10.1159/000492704

    Article  CAS  PubMed  Google Scholar 

  • Muller KH, Motskin M, Philpott AJ, Routh AF, Shanahan CM, Duer MJ, Skepper JN (2014) The effect of particle agglomeration on the formation of a surface-connected compartment induced by hydroxyapatite nanoparticles in human monocyte-derived macrophages. Biomater 35:1074–1088.

    CAS  Google Scholar 

  • Muniswami DM, Kanthakumar P, Kanakasabapathy I, Tharion G (2018) Motor recovery after transplantation of bone marrow mesenchymal stem cells in rat models of spinal cord injury. Ann Neurosci 25:126–140

    PubMed  PubMed Central  Google Scholar 

  • Naruphontjirakul P, Tsigkou O, Li S, Porter AE, Jones JR (2019) Human mesenchymal stem cells differentiate into an osteogenic lineage in presence of strontium containing bioactive glass nanoparticles. Acta Biomater 90:373–392. https://doi.org/10.1016/j.actbio.2019.03.038

    Article  CAS  PubMed  Google Scholar 

  • Nguyen AK, Patel R, Noble JM, Zheng J, Narayan RJ, Kumar G, Goering PL (2019) Effects of subcytotoxic exposure of silver nanoparticles on osteogenic differentiation of human bone marrow stem cells. Appl In Vitro Toxicol 5:123–133. https://doi.org/10.1089/aivt.2019.0001

    Article  CAS  Google Scholar 

  • Niu W, Guo Y, Xue Y, Chen M, Wang M, Cheng W, Lei B (2019) Monodisperse branched molybdenum-based bioactive nanoparticles significantly promote osteogenic differentiation of adipose-derived stem cells. Part Part Syst Charact 36:1900105. https://doi.org/10.1002/ppsc.201900105

    Article  CAS  Google Scholar 

  • Okada M, Matsumoto T (2015) Synthesis and modification of apatite nanoparticles for use in dental and medical applications. Jpn Dent Sci Rev 51:85–95

    Google Scholar 

  • Peng H, Yin Z, Liu H, Chen X, Feng B, Yuan H, Su B, Ouyang H, Zhang Y (2012) Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mMSCs. Nanotechnology 23:485102. https://doi.org/10.1088/0957-4484/23/48/485102

    Article  CAS  PubMed  Google Scholar 

  • Phimphilai M, Zhao Z, Boules H, Roca H, Franceschi RT (2006) BMP signaling is required for RUNX 2-dependent induction of the osteoblast phenotype. J Bone Miner Res 21:637–646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pissuwan D, Cortie CH, Valenzuela SM, Cortie MB (2007a) Gold nanosphere antibody conjugates for hyperthermal therapeutic applications. Gold Bull 40:121–129

    CAS  Google Scholar 

  • Pissuwan D, Valenzuela SM, Killingsworth MC, Xu XD, Cortie MB (2007b) Targeted destruction of murine macrophage cells with bioconjugated gold nanorods. J Nanopart Res 9:1109–1124

    CAS  Google Scholar 

  • Prajatelistia E, Lim C, Oh DX, Jun SH, Hwang DS (2015) Chitosan and hydroxyapatite composite cross-linked by dopamine has improved anisotropic hydroxyapatite growth and wet mechanical properties. Eng Life Sci 15:254–261

    CAS  Google Scholar 

  • Remya NS, Syama S, Gayathri V, Varma HK, Mohanan PV (2014) An in vitro study on the interaction of hydroxyapatite nanoparticles and bone marrow mesenchymal stem cells for assessing the toxicological behavior. Colloids Surf B Biointerfaces 117:389–397

    CAS  PubMed  Google Scholar 

  • Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zúñiga R, Saldaña-Koppel DA, Quiñones-Olvera LF (2015) Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed Res Int 2015:821279

    PubMed  PubMed Central  Google Scholar 

  • Rogina A, Antunović M, Pribolšan L, Mihalić KC, Vukasović A, Ivković A, Marijanović I, Ferrer GG, Ivanković M, Ivanković H (2017) human mesenchymal stem cells differentiation regulated by hydroxyapatite content within chitosan-based scaffolds under perfusion conditions. Polymers 9:387

    PubMed Central  Google Scholar 

  • Roohani-Esfahani SI, Nouri-Khorasani S, Lu Z, Appleyard R, Zreiqat H (2010) The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite PCL composites. Biomaterials 31:5509

    Google Scholar 

  • Sangeetha P, Maiti SK, Mohan D, Shivaraju S, Raguvaran R, Abu Rafee M, Bindhuja BV, Kumar N, Raguvanshi PDS (2017) Mesenchymal stem cells derived from rat bone marrow (rBM-MSCs): techniques for isolation, expansion and differentiation. J Stem Cell Res Ther 3:272–277. https://doi.org/10.15406/jsrt.2017.03.00101

    Article  Google Scholar 

  • Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V, Mijakovic I (2018) Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci 19:1979. https://doi.org/10.3390/ijms19071979

    Article  CAS  PubMed Central  Google Scholar 

  • Sobczak-Kupiec A, Tyliszczak B, Krupa-Żuczek K, Malina D, Piątkowski M, Wzorek Z (2014) Gold nanoparticles as a modifying agent of ceramic-polymer composites. Arch Metall Mater 59:1009

    Google Scholar 

  • Tada H, Nemoto E, Foster BL, Somerman MJ, Shimauchi H (2011) Phosphate increases bone morphogenetic protein-2 expression through cAMP dependent protein kinase and ERK1/2 pathways in human dental pulp cells. Bone 48:1409–1416

    CAS  PubMed  Google Scholar 

  • Ullah I, Subbarao RB, Rho GJ (2015) Human mesenchymal stem cells - current trends and future prospective. Biosci Rep 35:e00191. https://doi.org/10.1042/BSR20150025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uskoković V, Desai TA (2014) In vitro analysis of nanoparticulate hydroxyapatite/chitosan composites as potential drug delivery platforms for the sustained release of antibiotics in the treatment of osteomyelitis. J Pharm Sci 103:567–579. https://doi.org/10.1002/jps.23824

    Article  CAS  PubMed  Google Scholar 

  • Van Meerloo J, Kaspers GJL, Cloos J (2011) Cell sensitivity assays: the MTT assay. Methods Mol Biol 731:237–245. https://doi.org/10.1007/978-1-61779-80-5_20

    Article  PubMed  Google Scholar 

  • Vandiver J, Dean D, Patel N, Bonfield W, Ortiz C (2005) Nanoscale variation in surface charge of synthetic hydroxyapatite detected by chemically and spatially specific high-resolution force spectroscopy. Biomaterials 26:271–283

    CAS  PubMed  Google Scholar 

  • Vater C, Kasten P, Stiehler M (2011) Culture media for the differentiation of mesenchymal stromal cells. Acta Biomater 7:463–477

    CAS  PubMed  Google Scholar 

  • Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21

    CAS  PubMed  Google Scholar 

  • Wan A-J, Sun Y, Li W-T, Li H-L (2007) transmission electron microscopy and electron diffraction study of BSA-loaded quaternized chitosan nanoparticles. J Biomed Mater Res B Appl Biomater 86:197–207

    Google Scholar 

  • Wang FS, Wang CJ, Sheen-Chen SM, Kuo YR, Chen RF, Yang KD (2002) Superoxide mediates shock wave induction of ERK-dependent osteogenic transcription factor (CBFA1) and mesenchymal cell differentiation toward osteoprogenitors. J Biol Chem 277:10931–10937

    CAS  PubMed  Google Scholar 

  • Wang C, Meng H, Wang X, Zhao C, Peng J, Wang Y (2016) Differentiation of bone marrow mesenchymal stem cells in osteoblasts and adipocytes and its role in treatment of osteoporosis. Med Sci Monit 22:226–233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Cao X, Zhang Y (2017a) A novel bioactive osteogenesis scaffold delivers ascorbic acid, β-glycerophosphate, and dexamethasone in vivo to promote bone regeneration. Oncotarget 8:31612–31625. https://doi.org/10.18632/oncotarget.15779

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Chen B, Ma F, Lin S, Cao M, Li Y, Gu N (2017b) Magnetic iron oxide nanoparticles accelerate osteogenic differentiation of mesenchymal stem cells via modulation of long noncoding RNA INZEB2. Nano Res 10:626–642. https://doi.org/10.1007/s12274-016-1322-4

    Article  CAS  Google Scholar 

  • Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370

    CAS  PubMed  Google Scholar 

  • Xia Y, Chen H, Zhang F, Bao C, Weir MD, Reynolds MA, Ma J, Gu N, Xu HHK (2018) Gold nanoparticles in injectable calcium phosphate cement enhance osteogenic differentiation of human dental pulp stem cells. Nanomedicine 14:35–45

    CAS  PubMed  Google Scholar 

  • Xiao G, Jiang D, Thomas P, Benson MD, Guan K, Karsenty G, Franceschi RT (2000) MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biol Chem 275:4453–4459

    CAS  PubMed  Google Scholar 

  • Yang K, Cao W, Hao X, Xue X, Zhao J, Liu J, Zhao Y, Meng J, Sun B, Zhang J (2013) Metallofullerene nanoparticles promote osteogenic differentiation of bone marrow stromal cells through BMP signaling pathway. Nanoscale 5:1205–1212

    CAS  PubMed  Google Scholar 

  • Yao W, Lane NE (2015) Targeted delivery of mesenchymal stem cells to the bone. Bone 70:62–65

    CAS  PubMed  Google Scholar 

  • Yao W, Guan M, Jia J, Dai W, Lay YA, Amugongo S, Liu R, Olivos D, Saunders M, Lam KS, Nolta J, Olvera D, Ritchie RO, Lane NE (2013) Reversing bone loss by directing mesenchymal stem cells to bone. Stem Cells 31:2003–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yi C, Liu D, Fong CC, Zhang J, Yang M (2010) Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. ACS Nano 4:6439–6448. https://doi.org/10.1021/nn101373r

    Article  CAS  PubMed  Google Scholar 

  • Yuan T, Luo H, Tan J, Fan H, Zhang X (2011) The effect of stress and tissue fluid microenvironment on allogeneic chondrocytes in vivo and the immunological properties of engineered cartilage. Biomaterials 32:6017–6024

    CAS  PubMed  Google Scholar 

  • Yubao L, Klein CPAT, de Wijn J, Wolke J, de Groot K (1993) Morphology and phase structure of nanograde boneapatite-like rodshaped crystals. In: Ducheyne P, Christiansen D (eds) Bioceramics. Butterworth-Heinemann, Philadelphia, pp 173–178

    Google Scholar 

  • Yusop N, Battersby P, Alraies A, Sloan AJ, Moseley R, Waddington RJ (2018) Isolation and characterisation of mesenchymal stem cells from rat bone marrow and the endosteal niche: a comparative study. Stem Cells Int 2018:1–14

    Google Scholar 

  • Zainol I, Zakaria FA, Saliman MR, Derman MA (2008) Preparation and characterisation of chitosan/nano hydroxyapatite composites. J Solid State Sci Technol 16:153–159

    CAS  Google Scholar 

  • Zhang D, Liu D, Zhang J, Fong C, Yang M (2014a) Gold nanoparticles stimulate differentiation and mineralization of primary osteoblasts through the ERK/MAPK signaling pathway. Mater Sci Eng C Mater Biol Appl 42:70–77

    PubMed  Google Scholar 

  • Zhang X, Guo J, Zhou Y, Wu G (2014b) The roles of bone morphogenetic proteins and their signaling in the osteogenesis of adipose-derived stem cells. Tissue Eng Part B 20:84–92

    Google Scholar 

  • Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y (2011) Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 7:1322–1337

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Research Centre, Egypt.

Funding

This work was financially supported by the National Research Centre, Egypt (Thesis fund No. 71511).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia S. Mahmoud.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, N.S., Ahmed, H.H., Mohamed, M.R. et al. Role of nanoparticles in osteogenic differentiation of bone marrow mesenchymal stem cells. Cytotechnology 72, 1–22 (2020). https://doi.org/10.1007/s10616-019-00353-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-019-00353-y

Keywords

Navigation